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Resumo

Esta dissertação apresenta uma investigação da detecção de sistemas de aeronaves não
tripuladas (do inglês, unmanned aircraft systems (UAS)) usando diferentes abordagens.
Primeiro, a viabilidade de detectar um drone DJI Phantom IV com um radar pulsado
operando na banda X é investigada por meio de simulações e medições de campo. Em
segundo lugar, análises estatísticas e modelagem de vários conjuntos de dados da seção reta
radar (do inglês, radar cross-section (RCS)) são realizadas. Os conjuntos de dados de RCS
são gerados por simulações e também obtidos por medições, para diferentes frequências e
ângulos de elevação. A modelagem dos conjuntos de dados de RCS é realizada com base em
três critérios: Log-Likelihood, critério de informação de Akaike e critério de informação
bayesiano. Além disso, a influência dessa modelagem no alcance de detecção do radar
é analisada. Os resultados numéricos mostram que o radar pulsado na banda X pode
detectar o drone DJI Phantom IV até uma distância de 425 m e que a RCS de diferentes
UASs é predominantemente modelado por variáveis aleatórias do tipo Exponenciais ou
Pareto Generalizada, dependendo da frequência e do ângulo de elevação. A modelagem da
RCS pode melhorar o desempenho de detecção do radar, reduzindo a perda de flutuação
e aumentando a probabilidade de detecção. Assim, esta dissertação contribui para o
desenvolvimento de técnicas eficazes para detectar UASs usando sistemas de radar.

Palavras-chave: Drone, Radar, Detecção, RCS, Modelagem.



Abstract

This thesis presents an investigation of the radar detection of unmanned aircraft systems
(UASs) using different approaches. First, the feasibility of detecting a DJI Phantom IV
drone with a pulsed radar operating in the X-band is investigated through simulations and
field measurements. Second, statistical analysis and modeling of various datasets of the
radar cross-section (RCS) are performed. RCS datasets are generated by simulations and
also obtained by measurements, for different frequency tones and elevation angles. The
modeling of RCS datasets is realized based on three criteria: Log-likelihood, Akaike infor-
mation criterion, and Bayesian information criterion. Also, the influence of this modeling
on the radar detection range is analyzed. Numerical results show that the X-band pulsed
radar may detect the DJI Phantom IV drone up to a distance of 425 m and that the
RCS of distinct UASs is predominantly modeled by Exponential or Generalized Pareto
random variables, depending on the frequency tone and the elevation angle. The RCS
modeling can improve the radar detection performance by reducing the fluctuation loss
and increasing the detection probability. Thus, this thesis contributes to the development
of effective techniques for detecting UASs using radar systems.

Keywords: UAS, Radar, Detection, RCS, Modeling.
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Chapter 1

Introduction

Nowadays, the world is experiencing an increase in the popularity and quantity of drones.

According to Drone Industry Insigths (DRONEII) company, a leader in drone market

research, in 2023 it was recorded a global total of 7.6 million drone flight hours in two

operations types: visual line of sight (VLOS) and beyond visual line of sight (BVLOS)

[1]. Figure 1.1 shows a visual representation of the number of flight hours of drones by

country, where a larger circle circumference indicates higher flight hours. It is possible to

note that the VLOS operation is more common than the BVLOS one. In addition, China

is the leader in drone use for both types of operations, followed by the USA. In Brazil,

drone use is slightly lower than in Canada and only higher than in South Korea.

Yet, according to Federal Aviation Administration (FAA), the agency responsible for

controlling and regulating North American’s civil airspace, in its last Fiscal Year report,

by the end of 2022 had about 1.69 million registered recreational drone units and about

727 thousand registered commercial drone units on the territory of the United States [2].

In Brazil, although drone units are far less than that, there was a significant increase in

the number of registered drones. According to data available on the Agência Nacional de

Aviação Civil (ANAC) website [3], from June 2017 to May 2022 the number of registered

commercial and recreational drones increased from approximately 30, 000 units to over

90, 000 units, as can be observed in Figure 1.2.

Although the term drone is often used by the media and society, Unmmaned Aircraft

System (UAS) is a more acceptable term by the academic community [4]. These aircraft

can be used in a wide variety of useful applications, such as entertainment (e.g., photogra-

phy, cinematography [5]), commerce (e.g., delivery of products [6], last-mile delivery [7]),

security (e.g., factory security [8], police drones [9]) and even in healthcare (e.g., organ

delivery [10]). However, UASs can also be aimed at negative goals, including terrorism
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Figure 1.1: Flight hours in VLOS and BVLOS operations by country [1].

Figure 1.2: Registered commercial and recreational drones in Brazilian territory.

[11], drug trafficking [12], and espionage [13]. Therefore, it is necessary to find ways of

counteracting the aforementioned threats caused by the widespread of UASs.

With the aim of safeguarding the privacy and security of individuals and organiza-

tions, the increasing prevalence of drones has spurred the development of techniques for

detecting, classifying, and identifying drones. Detection involves determining whether a

drone is present in the monitored region. Classification is the determination of the type
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or category of the detected drone. This could be based on its size, shape, model, or other

distinguishing characteristics. Identification is a more specific process that involves de-

termining the exact model of the drone. Identification can provide detailed information

about the drone, such as its capabilities, range, payload capacity, and more. Each of these

steps plays a crucial role in the overall process of drone monitoring and management and

requires different techniques and technologies.

Considering only the drone detection process, there are some techniques that rely

on visual methods of detection, using images or videos, while others rely on acoustic

detection. There are also techniques that focus on passive detection of radio-frequency

(RF) emissions between the operator and the UAS, as well as those that utilize radar for

detection. Each of these methods has its own set of advantages and limitations, which

are presented in the following.

• Visual Detection: this approach uses video cameras [14] [15] or infrared [16] to

detect the UAS in a given search volume. However, this detection modality operates

unsatisfactorily under unfavorable atmospheric conditions (such as clouds, fog, rain,

snow) or limited visibility (such as during the night) [14]. Although high-quality

infrared cameras solve some of these problems, their costs are still very high, making

research in this area difficult [17]. Additionally, buildings or other constructions can

obstruct the line of sight between the camera and the UAS, significantly decreasing

its detection ability.

• Acoustic Detection: this type of detection involves analyzing the sound emitted

by the UAS through sets of microphones [18]. After this analysis, a database can

be produced with the specific sound fingerprint of each aircraft and can then be

used, also, to identify and classify them [19]. This detection modality works well for

short distances of up to 150 m [20]. However, its precision is greatly impaired when

detection is carried out in environments with a lot of noise, such as urban areas and

airports [21]. Furthermore, some UAS models have noise cancellation techniques

that make the use of this approach for detection unfeasible.

• Passive Detection: this detection technique exploits the fact that drones have

an on-board transceiver to communicate with the operator [22] [23]. In this way,

by capturing the electromagnetic signals exchanged between them, it is possible

to determine where the UAS is located and even the location of its operator [24].

However, this solution fails when the drone is operated autonomously [25]. In these
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cases, the drone generally flies using preprogrammed GPS reference points, and its

communication with the operator is limited [19].

• Radar Detection: this approach consists of using active radars that emit elec-

tromagnetic waves and capture the reflected signals, determining the presence of

targets based on the energy reflected by them [26]. Unlike visual detection, these

radars are effective even in adverse atmospheric conditions. Furthermore, since its

principle is not based on mechanical waves, the radars are immune to sound noise,

unlike acoustic detection. Moreover, they do not require communication between

the drone and the operator for detection, as passive detection requires. However,

radars are extremely dependent on the radar cross-section (RCS) of targets, typi-

cally represented as the effective area that intercepts the transmitted radar power

and scatters it back to the radar receiver, which in the case of UAS can be minimal

[27]. Furthermore, depending on the operating frequency, radars can have a high

path loss due to atmospheric attenuation, limiting their detection range [28].

Radar stands as a pivotal device in the realm of detection systems due to its dual

capability of detecting the presence of a target and also measuring its range with high

precision. No other method can compete with radar in terms of its resilience to weather

variations and its long-range measurement capacity [26]. Therefore, the role of radar as

a detection and range measurement tool is of paramount importance in various fields,

strengthening its position as an unrivaled technique in these aspects.

Thus, as radar detection overcomes the main limitations of the other detection tech-

niques mentioned above, this thesis proposes investigating radar detection in two steps:

the first is through the theoretical employ of the radar equation to determine whether it

is possible or not to detect a usual commercial drone with an X-band pulsed radar by

means of simulation and field measurement. In that manner, it is possible to analyze the

aspects of radar detection of a target that lies at the edge of two scatter regions due to

its body size and the wavelength of the X-band signal. The second step is to evaluate

the impact, in the radar range, treating RCS as a constant or as a random variable. In

addition, the possibility of modeling the RCS according to the usual random variables is

evaluated.

1.1 Objectives

The following objectives are meant to be achieved in this thesis:
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• To explore the viability of detecting a DJI Phantom IV drone utilizing an X-band

pulsed radar, employing a two-fold methodology encompassing simulations and field

measurements. Starting with Feko software simulations to determine the RCS value

specific to the Phantom IV, this thesis introduces two distinct methods, facilitated

by Matlab software, for analyzing the radar equation and deriving the system loss

parameter. Furthermore, the military software AREPS is employed, and its results

are meticulously compared with the Matlab-based methods. This iterative process

enhances the robustness of the assessment. Culminating in on-site field measure-

ments, where the X-band pulsed radar is deployed alongside the DJI Phantom IV.

This investigative process entails a comprehensive examination of the detection ca-

pabilities of an X-band pulsed radar system when faced with the specific character-

istics of a commercial drone. By integrating advanced simulations and conducting

real-world field measurements, it is expected to assess the feasibility and efficacy of

employing X-band pulsed radar for the detection of the DJI Phantom IV. This dual

approach, combining advanced simulations with real-world assessments, provides

a holistic understanding of X-band pulsed radar’s performance, contributing valu-

able insights into the practical aspects of drone detection in diverse and dynamic

real-world scenarios.

• To perform statistical analysis specifically targeting multiple datasets of RCS ac-

quired from different UASs. The complexity of this task requires a multifaceted

approach that incorporates the utilization of probability density functions, cumula-

tive distribution functions, and the generation of histograms for each unique RCS

dataset. By employing these advanced analytical techniques, it is expected to gain

a profound understanding of the inherent variability within the RCS datasets, facil-

itating more robust and accurate modeling. This intricate process involves not only

extracting valuable insights from individual datasets, but also establishing connec-

tions and patterns across various UASs.

• To determine the optimal random variable for modeling the RCS dataset. This

selection process involves evaluating probability distributions against the histogram

of the RCS data using three distinct criteria: Log-Likelihood (LLK), Akaike Infor-

mation Criterion (AIC), and Bayesian Informtion Criterion (BIC). The aim is to

identify probability distributions that closely align with the empirical distribution

of the RCS data, employing a nuanced approach that considers statistical measures

such as LLK, AIC, and BIC. This meticulous analysis enables the determination of

the most suitable random variable, contributing to a refined and accurate represen-
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tation of the underlying probability distribution that governs the RCS dataset.

• To assess the impact of RCS modeling on both radar detection range and overall

detection performance. This evaluative process involves a comprehensive examina-

tion that uses the radar range equation and incorporates the parameters intrinsic

to a real-world radar system. By leveraging the radar range equation and the rele-

vant system parameters, it is expected to gauge how RCS modeling influences not

only the reach of radar detection but also its overall effectiveness. This analytical

approach provides insights into the intricate interplay between RCS modeling and

the essential components of radar systems, shedding light on the nuanced factors

that contribute to the radar’s detection capabilities and performance.

1.2 Thesis outline

The remainder of this document is organized as follows:

• Chapter 2 introduces the basics of radar detection, such as the radar system, the

radar equation, the radar cross-section, and the effects of the atmosphere on the

electromagnetic waves. It also presents the classification of radars according to their

frequency bands, their ability to measure the Doppler effect, and the waveform of

their transmitted signal.

• Chapter 3 investigates the use of the FAR-2117 X-band pulsed radar to detect the

DJI Phantom IV drone. Initially, it presents the formulation of the problem when

using this kind of radar to detect drones. In addition, it discusses two methods of

analysis employing the radar range equation. For this, radar cross-section, radar

range, and detection probability simulations are introduced. Subsequently, field

measurements were made to validate the results obtained by the simulations.

• Chapter 4 discusses the statistical analysis and modeling of the RCS of a DJI Phan-

tom IV drone and of a database composed of 9 different UASs [29]. For the Phantom

IV drone, the RCS datasets are generated through simulations for distinct frequen-

cies and elevation angles, while in the UASs dataset the RCS were measured in an

anechoic chamber. In addition, the impacts of RCS modeling on the radar detection

range are analyzed.

• Chapter 5 states the concluding remarks of this thesis, revisiting the main points

discussed, highlighting the main contributions, and establishing future work.



Chapter 2

Radar Detection

This chapter presents a brief history of the origin of the radar system and its definition.

Also presents its classification regarding the operating frequency bands, the ability to mea-

sure the Doppler effect, and the transmitted signal’s waveform. Furthermore, the radar

equation for pulsed and frequency-modulated continuous wave (FMCW) radar systems

and relevant parameters that affect the radar detection are discussed.

2.1 Radar System

The term radar is an acronym for Radio Detection And Ranging. Radar is a system that

emits electromagnetic waves and captures the reflected signals, also called echo radar,

determining the presence, distance, and speed of targets based on the energy reflected by

them. This system was one of the main scientific discoveries during World War II, which

helped change the course of this war and thus shape the modern society [30].

The first step towards the development of radar began in 1886 by the German physicist

Heinrich Hertz. Using an equipment that emitted pulses at a frequency close to 455 MHz,

Hertz demonstrated that radio waves could be reflected in metallic objects [31]. Then, in

1904, another German engineer, Christian Hülsmeyer, created a device that could detect

ships from a distance using radio waves, but at that time it had neither commercial nor

military success [32].

It was only in the 1930s that radar began to be used for military purposes, mainly

during World War II. British Robert Watson-Watt was the pioneer in creating a practical

and effective radar system, which allowed the British to detect German planes that were

bombing the country. This system became known as Chain Home [33]. Radar was
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fundamental to the Allied victory in the Battle of Britain and on other fronts of the war

[30].

Since then, radar systems have continued to be improved and applied in various civil

and military areas, being used to control air traffic, predict the weather, navigate at sea

and in the air, defend against ballistic missiles, explore space and, recently, to help guide

autonomous cars. In general, the main functions of a radar system are [34]:

• Search: also called surveillance, this function involves searching for possible targets

of interest in a given volume of space.

• Detection: radar detection is the determination that a target is present in the

search volume. This is usually done by setting a received signal threshold that

excludes most noise and other interfering signals, if the reflected signal exceeds a

given threshold the target is detected.

• Measurement: based on the reflection of the target’s signal, the radar system can

calculate the distance and direction, in angular coordinates, of its position.

• Tracking: radar tracking is the determination of the path of a moving target from

a series of consecutive position measurements.

• Estimation of target characteristics: a radar system can estimate other at-

tributes of the target to better characterize or identify it. These estimations may

include RCS, fluctuations of RCS with time, target size, target shape, and target

motion characteristics by means of the Doppler effect.

Basically, radars are classified according to their operating frequency band, their abil-

ity to measure the Doppler effect, and the transmitted signal’s waveform. These classifi-

cations are discussed in the following subsections.

2.1.1 Frequency Bands

Because radars were widely used during World War II, their frequency bands used letter

codes to distinguish each other. Although, initially, this code was used to maintain the

military secrecy of operations, over time, they continued to be used and accepted by the

scientific community, even being approved as a standard by Institute of Electronic and

Electrical Engineering (IEEE) [35] and as a recommendation by International Telecom-

munication Union (ITU)-R [36]. Table 2.1 shows the frequency bands, as well as the
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corresponding designation of the IEEE Standard — adopted in this thesis — and ITU-R

Recommendation.

Table 2.1: Letters designations for radar system frequency bands in IEEE and ITU.

Frequency bands IEEE standard ITU-R recommendation
3-30 MHz HF HF

30-300 MHz VHF VHF
0.3-1 GHz UHF

UHF (0.3-3 GHz)1-2 GHz L

2-4 GHz S

SHF (3-30 GHz)

4-8 GHz C
8-12 GHz X
12-18 GHz Ku
18-27 GHz K

27-40 GHz Ka

EHF (30-300 GHz)40-75 GHz V
75-110 GHz W
110-300 GHz mm

Most research related to radar detection of UAS has focused on radar systems oper-

ating in L-band (1-2 GHz) [37], S-band (2-4 GHz) [38], X-band (8-12 GHz) [39], Ku-band

(12-18 GHz) [40], K-band (18-27 GHz) [41], and Ka-band (27-40 GHz) [42].

2.1.2 Doppler Effect

The Doppler effect is a physical phenomenon described by a change in the measured

frequency of a mechanical or electromagnetic wave in relation to an observer who is

moving relative to the source of the wave. This effect was discovered by Austrian physicist

Christian Doppler in 1842 and has several applications in science and technology.

Radar systems with the ability to measure the Doppler effect are coherent, while its

counterpart is incoherent. A coherent radar system is capable of maintaining a constant

phase relationship between transmitted and received signals, allowing detection of the

Doppler effect and, consequently, measurement of a target’s speed [43]. Yet, there are

those radar systems that measure the micro-Doppler effect and can also obtain a specific

signature of a target, such as, for example, the rotation speed of the propellers of an UAS
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[44]. Doppler shift in radar systems is given by [45]

fmsd = ftrm

(
c± vrdr

c± vtgt cos β

)
= ftrm

 1± vrdr
c

1± vtgt cos β

c

 , (2.1)

in which fmsd and ftrm are, respectively, the frequency of the measured signal by the radar

receiver side and the frequency of the transmitted signal by the radar transmitter side,

both in Hertz; c ≈ 3× 108 meters per second represents the speed of light, while vrdr and

vtgt are, respectively, the magnitudes of the radar system’s speed and the target’s speed,

both in meters per second. Also, β is the angle between the target speed’s vector and a

vector pointing to the target with the origin in the radar.

Figure 2.1 shows an illustration of the Doppler Effect in a radar system with the

given parameters. For a coherent radar system, fmsd and ftrm are known. Also, in some

cases, the radar is not moving linearly (vrdr = 0) and β can be determined by the angular

position of the radar’s antenna and the direction of movement of the target. Therefore, the

remaining term, vtgt, can be calculated through the knowledge of the other parameters.

Figure 2.1: Illustration of the Doppler Effect in a radar system.
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2.1.3 Transmitted Signal’s Waveform

Regarding the transmitted signal, radar systems are classified into two main groups:

pulsed radars and continuous wave (CW) radars [46]. Pulsed radar emits intermittent

bursts of radio frequency energy, allowing for precise range measurements and effective

clutter rejection. In contrast, CW radar continuously emits a waveform, making it well-

suited for continuous tracking and exploiting the Doppler effect for velocity measurements.

Furthermore, while pulsed radars use a single antenna for transmission and reception, CW

radars require two separate antennas for simultaneous transmission and reception [26]. In

addition to these types of radars, not presented in this thesis, there are techniques that

aim to improve these systems, such as pulse compression radar, which basically combines

a continuous wave modulated in frequency with the pulses of a pulsed radar, aiming to

improve the resolution and signal-to-noise ratio of the radar. However, each of them has

unique characteristics with respect to power consumption, clutter rejection, complexity,

costs, and applications.

In terms of power consumption, pulsed radar systems often demand higher power

levels during the transmission phase due to the intense energy required to generate short

pulses. On the other hand, CW radar systems maintain a more consistent power demand

as they emit a continuous waveform without interruptions. Clutter rejection is another

distinguishing factor, with pulsed radars excelling in cluttered environments because of

their intermittent nature, allowing for improved discrimination between signals and un-

wanted echoes. CW radar systems may face challenges in cluttered environments, as their

continuous transmission lacks distinct time intervals between pulses for effective clutter

rejection [47]. Considering their complexity and costs, pulsed radar systems tend to be

more complex and expensive, especially in applications that require advanced signal pro-

cessing techniques for target discrimination and tracking. CW radar, with its simpler

design, is often more cost-effective, making it suitable for applications that prioritize con-

tinuous tracking and basic Doppler velocity measurements [47]. Pulsed radar systems

are commonly employed in applications where high precision, accurate range measure-

ments, and clutter rejection are critical, such as in air traffic control, military tracking,

and surveillance. On the other hand, CW radar systems are suitable for tasks that re-

quire continuous tracking and basic Doppler velocity measurements, including police speed

guns, weather monitoring, and certain aerospace applications. The choice between pulsed

and CW radars depends on the specific requirements of the application, with designers

weighing the advantages and limitations of each technology [26].
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2.1.3.1 Pulsed Radar System

Pulsed radars operate with short-duration signals that are transmitted and received by a

single antenna. Figure 2.2 illustrates the transmitted signal from a pulsed radar system

along with its main operating parameters. During the pulse transmission interval, i.e., the

pulse length (PL), the radar system blocks the reception channel to avoid receiving high

power due to this transmission. After this interval and before the next pulse transmission,

the radar system waits for the reflected signals from the target. The time between each

transmitted pulse, Tp, is called pulse repetition time (PRT), given in seconds, with Tp =

f−1
p , in which fp is the pulse repetition frequency (PRF), i.e., is the frequency at which

the pulses are transmitted, given in Hertz. The bandwidth of the transmitter, BTX
W , is

referenced as inversely proportional to the pulse length, and the bandwidth of the receiver,

BRX
W , is kept constant in the radar design, in general, BRX

W > BTX
W .

Figure 2.2: Transmitted and received signals of a pulsed radar system. The red line refers
to the signal in the operating frequency of the radar.

To calculate the distance to a target, the radar system measures the time interval that

a single transmitted pulse takes to travel from the radar to the target and vice-versa. This

is called round-trip time of the signal. Considering that electromagnetic waves travels, in

free space, at the speed of light, then, the distance to a target is given by

R =
c∆t

2
, (2.2)
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in which ∆t is the round-trip time of the signal in seconds.

Another important parameter of a pulsed radar system is its Maximum Unambiguous

Range, which is defined as the greatest distance at which a transmitted radar pulse can

travel and return between consecutive pulses and still produce reliable information [26].

Observe that if ∆t < Tp, the return signal arrives before the next pulse is transmitted.

If ∆t = Tp, the reflected signal arrives exactly when the next pulse is transmitted. If

∆t > Tp, the reflected signal arrives after the next pulse is emitted and there is an

ambiguity, i.e., the radar cannot tell whether the reflected signal came from the first or

the second pulse.

Therefore, the maximum unambiguous range is the distance at which ∆t < Tp and it

is given by

Run =
cTp

2
=

c

2fp
. (2.3)

2.1.3.2 CW Radar System

CW radar systems continuously and simultaneously transmit and receive the echoes re-

flected by the targets and, therefore, require an antenna for transmission and another for

reception. The speed and trajectory of a moving target can be determined by observ-

ing frequency changes on the radar receiver side due to the Doppler effect. Purely CW

radar systems cannot perform range measurements without some additional modulation,

such as frequency modulation (FM). CW radars that use FM are called FMCW radars.

Figure 2.3 shows the variation of the amplitude over time of transmitted and reflected

signals of an up-chirp FMCW radar system. Note that the reflected signal has the same

waveform as the transmitted signal but is delayed by the round-trip time, ∆t.

Thus, to calculate ∆t, (2.2) can be rewritten as

∆t =
2R

c
. (2.4)

The main characteristic of an FMCW signal is its chirp, which is defined as a signal

that increases linearly in frequency over time. Each chirp signal has a defined time

interval of duration (also known as sweep repetition time, Ts), bandwidth (Bw), and

sweep repetition frequency (SRF) (fs). The latter refers to the frequency at which the

entire chirp is repeated and is given by the relation fs = 1/Ts [48].

Figure 2.4 shows a graph of the FMCW transmitted and reflected signal’s frequency



2.2 Radar Equation 14

Figure 2.3: Transmitted and reflected signals of a FMCW radar system in amplitude over
time.

variation over time, in which ∆f is the frequency variation between the transmitted and

reflected signal, Ts is the chirp interval, f0 is the initial frequency, BTX
W is the bandwidth

at the transmitter, and fD is the frequency shift observed by the radar system.

Observing the Figure 2.4, it is possible to notice that there is a difference ∆f between

the transmitted and the reflected signals. The measurement of this difference by the

radar system led to the delayed time, ∆t of the reflected signal and, consequently, to the

calculation of the target distance R by (2.4), in every transmission (or chirp) period Ts,

in which the frequency f0 is varied up to f0 + BTX
W . Furthermore, when the signal is

measured over several chirp periods, the Doppler effect allows one to observe a frequency

shift fD for a target approaching or moving away from the radar. Thus, the target’s speed

can be measured by (2.1).

2.2 Radar Equation

The radar equation is a mathematical expression that describes the relationship between

the radar range and the parameters of the transmitter and receiver sides of the radar

system, the target, and the surrounding environment. It is a valuable tool for estimating

the maximum distance at which a radar can detect a target, as well as for analyzing
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Figure 2.4: Transmitted and reflected signals from a FMCW radar system in frequency
over time.

the factors that influence radar performance. Moreover, it is an essential instrument for

assisting in radar system design [26].

In the radar equation’s simplest form, the maximum radar range is given by [43]

R4
max =

PtGtGrλ
2σ

(4π)3Smin

, (2.5)

in which Pt is the transmitted power in Watts, Gt and Gr are, respectively, the gains of

the transmitting and receiving antennas (for a pulsed radar system, Gt = Gr = G). Also,

λ is the wavelength of the transmitted signal in meters, σ is the target’s RCS in square

meters, and Smin is the minimum detectable signal power by the radar, given in Watts.

Note that, except for σ, all other parameters are intrinsic to the radar system.

However, (2.5) does not provide an adequate prediction of the maximum radar range,

since there are some external factors that affect its performance, such as:

• The statistical nature of the minimum detectable signal;
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• Fluctuations and uncertainties in the RCS of targets;

• System-related losses;

• Effects of electromagnetic wave propagation in the atmosphere.

As mentioned before, both Smin and σ are subject to random variations, and, thus,

uncertainty is introduced in the radar range. In this regard, the radar equation becomes

a function of the detection probability (Pd) and the false alarm probability (Pfa). Pd is

the probability of detecting a target when there really is one, while Pfa is the probability

of detecting when there is no target present. In the following, each external factor that

affects the performance of a radar systems is discussed. First, it is presented for the case

of a pulsed radar system, then, at last, the radar equation is modified for the case of a

FMCW radar system.

2.2.1 Signal Detection in Noise

The radar’s ability to detect a target is influenced by the minimum signal strength, Smin,

that allows the reflected signal to be discerned from noise. To occur the radar detection,

a decision threshold is established in the equipment’s receiver, so that a value above this

threshold represents the echo of a target and values below this threshold represent some

unwanted noise. However, there may be cases in which a radar echo, originating from a

target actually present, has a level lower than the established threshold and, therefore, it

is not detected.

Figure 2.5 illustrates a signal reflected with noise by a radar system as a function of

time, as well as some established thresholds. In this figure, the noise amplitude (blue line)

may result in false detection. Note that, considering the Threshold 1 (black dash line),

the target signal (red line) which has the higher amplitude will be detected by the radar,

but the lower target signal will not. Now, considering the Threshold 2 (yellow dash line),

note that both the higher target signal and noise signal will be indicated by the radar as

two distinct targets, increasing the false alarm occurrence. Although the threshold can be

changed, it must be considered that reducing its value may result in a greater probability

of detecting false alarms, for example when the Threshold 3 (green dash line) is selected.

Although used in (2.5), the parameter Smin is not the best one to analyze the per-

formance of a radar system, it is preferable to use the signal-to-noise ratio (SNR) S/N

which, basically, measures how much the detectable signal’s power is greater or lower than
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Figure 2.5: Thresholds candidates and signals received by a radar system.

the noise’s power. To find the relation between Smin and S/N , consider that the noise’s

power at the radar receiver is given by

Ni = kT0B
RX
W F, (2.6)

in which k is the Boltzmann constant (1, 38.10−23 J/K), T0 is the standard noise tem-

perature (290 K), and F is the noise figure (NF). NF is a measure that indicates the

degradation of the signal caused by noise in a radar system. It is calculated as the ratio

between the input SNR, Si/Ni, and the output SNR, S0/N0, of the device [43] and it is

given by

F =
Si/Ni

S0/N0

. (2.7)

Replacing the (2.6) into (2.7) and rearranging, then

Si = kT0BWF

(
S0

N0

)
. (2.8)

If Si = Smin, then
(
S0

N0

)
=

(
S0

N0

)
min

, thus, (2.8) results in

Smin = kT0BWF

(
S0

N0

)
min

. (2.9)
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Replacing (2.9) into (2.5), considering Gt = Gr = G, and omitting subscripts in S/N

terms, then

R4
max =

PtG
2λ2σ

(4π)3kT0BRX
W F (S/N)

. (2.10)

The advantage of using (S/N) instead of Smin is that its value can be expressed as

a function of Pd and Pfa. The relationship between (S/N), in dB, when only one pulse

is received, Pd and Pfa for an accuracy of 0.2 dB considering 10−7 ≤ Pfa ≤ 10−3 and

0.1 ≤ Pd ≤ 0.9 is given by [49]

(S/N)1 = 10 log (A+ 0.12AB + 1.7B), (2.11)

in which A = ln (0.62/Pfa) and B = ln [Pd/(1− Pd)]. Figure 2.6 shows the SNR, (S/N),

required for a given Pd and Pfa. This relationship applies to a single receive pulse. Note

that, as Pd and Pfa are parameters determined in the design of a radar system, then, with

those values, it is possible to obtain the value of required (S/N)1 through the graph. For

example, considering a radar system design which requires Pd = 0.8 and Pfa = 10−3, then

the required (S/N)1, for a single pulse, is about 10 dB.

Figure 2.6: Relation between (S/N)1 and Pd for some Pfa values.

A pulsed radar often emits and receives several pulses, called a pulse train. The
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number of pulses, n, received by the radar is given by [26]

n =
θbhfp
6ωr

, (2.12)

in which θbh is the horizontal beamwidth in degrees, fp is the radar PRF in Hertz, and ωr

is the antenna rotation speed in rotations-per-minute. Thus, an approximation for S/N ,

in dB, when n pulses are received is given by [26]

(S/N)n = −5 log (n) +

(
6, 2 +

4, 54√
n+ 0, 44

)
log (A+ 0.12AB + 1.7B), (2.13)

in which A and B are the same as in (2.11). (2.13) has an error of less than 0.2 dB for

1 ≤ n ≤ 8096, considering 10−7 ≤ Pfa ≤ 10−3 and 0.1 ≤ Pd ≤ 0.9. Figure 2.7 shows the

relation between (S/N)n and Pd for some Pfa values, considering different values of n.

Figure 2.7: Relation between (S/N)n and Pd for some Pfa values, considering, from left
to right and from top to bottom, n = 3, n = 7, n = 10, n = 20.

Comparing the Figures 2.6 and 2.7, it is possible to observe a decrease in the required

SNR for the same Pd and Pfa. For example, in Figure 2.7, for Pd = 0.8 and Pfa = 10−3,

the required (S/N)n is about 6.2 dB for n = 3, 3.6 dB for n = 7, 2.5 dB for n = 10, and

0.6 dB for n = 20, unlike the 10 dB found in Figure 2.6 for n = 1. Thus, this process of

adding n pulses, called Pulse Integration, allows for the detection of targets with weaker

signals, which can result in a lower transmission power per pulse.

Pulse integration in radars is a technique that aims to improve target detection by

processing multiple received echoes. There are two types of pulse integration: coherent
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and non-coherent. The difference between them is related to the processing of the pulse

phase.

In coherent radar processing, the phase of the transmitted and received pulses is

constant and is used to extract additional information about the target, such as its radial

velocity (Doppler effect) and its size (angular resolution). This type of processing is used

in radars that have transmitters with power amplifiers powered by a stable continuous

oscillation, which serves as a phase reference. This type of integration is more complex,

but provides accurate Doppler frequency measurements and better target detection [26].

In non-coherent radar processing, the phase of the transmitted and received pulses

is random and it is not considered. The amplitudes of echoes received from the same

target are added together, thus increasing the signal-to-noise ratio. This type of process-

ing is used in radars that have self-oscillating transmitters, which do not have a stable

phase reference. This type of integration is simpler, lower cost, and suitability for certain

applications [43].

The advantages of coherent processing over non-coherent processing are: greater sen-

sitivity in target detection, greater ability to discriminate close or overlapping targets,

greater ability to measure the radial velocity of targets and greater ability to suppress

interference and noise. In both cases, the integration efficiency is given by [26]

Ei(n) =
(S/N)1
n(S/N)n

. (2.14)

For coherent integration Ei(n) ≈ 1 and for non-coherent Ei(n) < 1. The improvement

in the SNR when n pulses are integrated is called the Integration Factor, Ii(n), which is

given by

Ii(n) = nEi(n). (2.15)

Figure 2.8 shows the graphs for Ii(n) as a function of n for some Pd values, considering

different values for Pfa. Observe that, for the same n and increasing Pfa, Ii(n) decreases

for the same Pd. Besides, for the same n, Ii(n) is less sensitive to Pfa changes, e.g.,

considering ∆Ii(n) = Ii,Pd=a (n) − Ii,Pd=b (n), for a = 1, b = 0.2, and Pfa = 10−6,

∆Ii(50) = 6.3, for Pfa = 10−3, ∆Ii(50) = 7.5, i.e., a variation of 10.000% in Pfa produced

a variation of, approximately, 19% in Ii(n).

Considering, now, the Pulse Integration, (2.10) can be rewritten as

R4
max =

PtG
2λ2σ

(4π)3kT0BRX
W F (S/N)n

. (2.16)
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Figure 2.8: Integration Factor, Ii(n), as function of the number of integrated pulses, n, for
some Pd, considering, from left to right and from top to bottom, Pfa = 10−6, Pfa = 10−5,
Pfa = 10−4, Pfa = 10−3.

Alternatively, rearranging and replacing (2.14) in (2.16), the Radar Equation becomes

R4
max =

PtG
2nEi(n)λ

2σ

(4π)3kT0BRX
W F (S/N)1

. (2.17)

2.2.2 Radar Cross-Section

According to IEEE, the formal definition of RCS is [50]:

A measure of the reflective strength of a radar target, usually represented by

the symbol σ and measured in square meters. RCS is defined as 4π times the

ratio of the power per unit of solid angle scattered in a specified direction to the

power per unit area in a plane wave incident on the scatterer from a specified

direction. More precisely, it is the limit of that ratio as the distance from

the scatterer to the point where the scattered power is measured approaches

infinity.

In other words, the RCS, σ, is proportional to the ratio between the power density

reflected by the target, |Erft|2, and the power density incident on it, |Eind|2, within the

limit of an infinite distance between the transmitter and receiver, as given by

σ = lim
r→∞

4πr2
(
|Erft|2

|Eind|2

)
, (2.18)
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in which Erft and Eind are, respectively, the scattered and the incident electric field, and

r is the distance between the transmitter and the receiver, in meters.

This definition assumes that the target is in free space without obstacles or interfer-

ence, and in the distance condition of far field, so the incident wave on the target becomes

plane. The far field distance, dF , is given by [51]

dF ≥ 2D2

λ
, (2.19)

in which, D is the length of the antenna and λ is the wavelength of the incident wave,

both in meters.

There are three RCS measurement types: monostatic or backscatter, forward-scatter,

and bistatic. The monostatic is the most common method of RCS measurement, at it the

transmitter and receiver antennas are col-located, i.e., the incident and reflected scattering

directions are the same but in opposite sense. They can use or not the same antenna to

transmit and receive. The forward-scatter is the measure of the scattered power in the

forward direction of the transmitter antenna, and it is usually 180◦ out of phase with the

incident wave. The bistatic is when the scattered energy is dispersed or bounced back in

all directions, except for the direction of incidence or its opposite. Figure 2.9 illustrates

these three RCS measurement types, regarding the transmitter, TX , and receiver, RX ,

antennas and target location. Transmitter antenna, TX , is the same for them.

Figure 2.9: RCS measurement types: monostatic or backscatter, forward-scatter, and
bistatic.

In relation to a radar system, RCS expresses the ability of a target to reflect the radio

waves that fall on it, that is, it is a measure of radar visibility. It depends on the shape,
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size, orientation, and material of the target, as well as the frequency and polarization of

the incident wave. It is measured in square meters (m2) or in its decibel form (dBsm)

and can vary from small values, for stealth or small targets, to considerable values, for

spherical targets or targets with metallic surfaces. Table 2.2 presents average RCS values

of some targets for radars with operating frequencies in the X-band [26].

Table 2.2: Common measured RCS in X-band frequency.

Target σ(m2) σ(dBsm)
Large bird 0,01 -20

Conventional winged missile 0,1 -2
Human 1 0

Helicopter 3 4,8
Cabin cruiser 10 10
Automobile 100 20
Pickup truck 200 23

The mechanism of scattering depends on body size (L) relative to the wavelength

(λ) of the incident wave. There are three scattering regions: Rayleigh, Resonant or Mie,

and Optics. The Rayleigh region is defined for L ≪ λ, where the scattering is induced

by dipole moments, i.e., the incident electromagnetic wave interacts with the target and

induces an electric current on its surface. The induced current then radiates a secondary

electromagnetic wave, the scattered one. In this region, RCS is determined by the volume

of the scattered target rather than by its shape [34].

The resonant or Mie region occurs when L ≈ λ, in which surface wave effects such

as edge, and creeping waves traveling along with optical effects are relevant. Alterations

in the RCS are a result of frequency variations, due to the constructive and destructive

interference of two waves. One wave is the direct reflection from the target’s front face.

The other is the creeping wave that circumnavigates the target, returns to the radar, and

interferes with the reflection from the target’s front [27].

Finally, the Optics region is established when L ≫ λ, resulting in insignificant surface

wave effects whereas only optical effects take place and the RCS approaches the physical

area of the target face reflected as the frequency is increased. It is important to notice

that this does not mean that the RCS is equal to the geometric area of the target [26].

Since there is no unanimity, in the literature, about the limits of these regions, this

thesis adopted, in practical terms, that the regions are limited by L < λ (Rayleigh),

λ < L < 10λ (Resonant or Mie) and L > 10λ (Optics) [27]. Figure 2.10 shows a sphere’s

RCS in these three regions, in which σ is normalized regarding the projected area of the



2.2 Radar Equation 24

sphere (i.e., the area of a circle, πa2) and the sphere circumference is normalized by the

wavelength (λ) [28].

Figure 2.10: Normalized sphere’s RCS in Rayleigh, Resonance or Mie, and Optics regions
[28].

Another important analysis of the RCS is the Swerling cases. Introduced by Peter

Swerling in 1954, they are widely used in radar system design and analysis. These cases

are a set of statistical models that describe the fluctuations of the target’s RCS due to

its movement or orientation [52]. The Swerling cases differ in how they assume the target

RCS changes over time and space [53]. The Swerling I case applies to a target that

has its RCS amplitude varying, independently, from scan to scan, ruled by a chi-square

probability density function (PDF) with two degrees of freedom, such small UASs. The

Swerling II case applies to a target that has the same PDF characteristics as the Swerling

I case, but its RCS changes randomly from pulse to pulse [54]. This can be used to model

a target with diversity, such as frequency, space, or polarization.

The Swerling III and IV cases apply to a target that has one large scatterer and

several smaller ones, such as a ship. The Swerling III case assumes that the RCS of the

large scatterer is constant, while the RCS of the smaller ones changes randomly from scan

to scan, according to a chi-square PDF with four degrees of freedom. The Swerling IV

case assumes that the RCS of both the large and small scatterers changes randomly from
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pulse to pulse, with the same PDF as Swerling III case [54].

There is, also, the Swerling 0 case (steady target or nonfluctuating target), which

is a reference value that assumes a constant average target RCS. In general, Swerling

demonstrated that the statistical properties of Swerling I and II models are applicable

to targets made up of numerous small scatterers with similar RCS values. On the other

hand, the statistical characteristics of Swerling III and IV models are suitable for targets

composed of one large RCS scatterer accompanied by many small scatterers with equal

RCS values [52].

The fluctuations of the target RCS affect the radar performance in terms of detection

probability and range. Named as fluctuation loss, Lf , it is associated with the reduction

in detection probability or range due to the variations of the target RCS value. The

fluctuation loss depends on the number of pulses integrated, the detection probability,

the false alarm probability and the Swerling case. Figures 2.11, 2.12, and 2.13 show Lf

as a function of Pd for Swerling cases I, II, III, IV, and 0, considering Pfa = {10−10, 10−4}
and assuming the number of integrated pulses n = {4, 10, 20}.

Figure 2.11: Lf as a function of Pd for Swerling cases I (left) and II (right).
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Figure 2.12: Lf as a function of Pd for Swerling cases III (left) and IV (right).

This outcome indicates that for the Swerling I and III scenarios, where there’s no

variation in RCS from pulse-to-pulse, the loss is not significantly affected by the number

of pulses, n. However, it’s highly dependent on the detection probability, Pd. Elevated

required Pd values lead to substantial fluctuation loss. In the Swerling II and IV models

situation, where the RCS varies from pulse-to-pulse, the Lf is highly dependent on the

number of pulses and diminishes quickly with n. The fluctuation loss doesn’t strongly

depend on Pfa in both Swerling I and III scenarios. In Swerling 0 case, it is possible

to note that the loss isn’t significantly affected by increasing Pd because is the case of a

steady target, i.e., it doesn’t have significantly variation in the average RCS values.

Adding Lf in (2.17), results in

R4
max =

PtG
2nEi(n)λ

2σ

(4π)3kT0BRX
W F (S/N)1Lf

. (2.20)

Despite introducing the integration loss, it is important to notice that (2.20) still does

not consider others internal losses of a radar system, often called System Losses.
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Figure 2.13: Lf as a function of Pd for Swerling case 0.

2.2.3 System Losses

There are various losses associated with a radar system, such as microwave plumbing

losses, antenna losses, signal processing losses, fluctuation loss, operator loss, and equip-

ment degradation. Individually, they can be small, but when are added up they can result

in a significant total loss. According to [46], it is not unusual for the system loss, Ls, to

assume values varying from 10 dB to over 20 dB.

Despite Ls being an important parameter, some of it can only be, arbitrarily, as-

signed such as the operator losses, and other losses are statistical-nature and can only be

estimated [55]. Another problem in obtaining Ls parameter, is the information from the

manufacturer. According to [26], there are different methods for estimating system losses

and their impact on radar performance, and there is no consensus on which one is the

best. Radar sellers may tend to underestimate the total system loss and claim a higher

performance than what a radar buyer or an independent evaluator may expect. To verify

or compare the performance claims made by different radar manufacturers, it is essential

to know what losses each radar designer has accounted for.

Adding Ls in (2.20), it becomes

R4
max =

PtG
2nEi(n)λ

2σ

(4π)3kT0BRX
W F (S/N)1LfLs

. (2.21)
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2.2.4 Effects of Electromagnetic Propagation in the Atmosphere

There are two factors that affect the performance of a radar system, which are related to

its operating frequency.

The first factor is the one-way attenuation caused by the absorption of gases in the

atmosphere. Figure 2.14 shows the attenuation due to the resonance of water vapor and

oxygen molecules as a function of the radar system’s operating frequency [56]. Note that

there is a resonance peak in the water vapor curve at approximately 22 GHz, at which the

attenuation is approximately 0.19 dB/km. The resonance peak due to oxygen molecules is

at 60 GHz, in which the attenuation jumps from 0.27 dB/km at 50 GHz to 15.17 dB/km.

Figure 2.14: Attenuation of the electromagnetic waves by water vapor and oxygen as a
function of the frequency.

Note that for frequencies below 10 GHz, atmospheric attenuation has no significant

effect, with its total value being in the order of 10−2 dB/km. For frequencies above

10 GHz, the attenuation not only increases, but becomes more dependent on peculiar

absorption characteristics of atmospheric gases, such as water vapor and oxygen, which

causes the resonance peaks [57].

The second factor is the one-way attenuation caused by weather conditions. Fig-

ure 2.15 shows the attenuation effect for different rainfall intensities as a function of

the operating frequency [57]. Note that frequencies below 10 GHz begin to experience
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attenuation greater than 1 dB when the precipitation rate is greater than 40 mm/h, cor-

responding to excessive rainfall. Frequencies close to 100 GHz are attenuated by the same

amount from light rain, corresponding to a precipitation rate of just 1 mm/h.

Figure 2.15: Attenuation of the electromagnetic waves by rain as a function of the fre-
quency.

Both attenuations are included in the numerator of (2.17) by the factor e−2αR [26],

in which α is the sum of the attenuations of Figures 2.14 and 2.15, in m−1, and R is the

distance to the target, in meters. Thus, adding this term in (2.21), the pulsed radar range

equation becomes

R4
max =

PtG
2nEi(n)λ

2σe−2αR

(4π)3kT0BRX
W F (S/N)1LfLs

. (2.22)

Important to notice that (2.22) is used for pulsed radar system only. For a FMCW

radar system, instead of the improvement factor, Ii(n), due to the integration of pulses,

there is the relation given by

BTX
W Ts =

BTX
W

fs
. (2.23)

Then, replacing (2.15) by (2.23) in (2.22) and simplifying it, the FMCW radar range

equation is given by

R4
max =

PcwGtGrλ
2σe−2αR

(4π)3kT0F (S/N)1LfLsfs
, (2.24)

in which Pcw is the average transmit power of the FMCW radar.
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In this context, the construction of a radar must consider the purpose of the equip-

ment. Generally, low-frequency radars require larger antennas and are not accurate at

measuring angles and distances. On the other hand, they can accommodate higher volt-

ages and currents, generating greater power and, consequently, greater range. Further-

more, at low frequencies, radars suffer less from external factors. Unlike low-frequency

radars, those that use high frequency have smaller antennas that are easy to install and

move, in addition to providing more precise measurements of angles and distance. How-

ever, they suffer more from attenuation caused by external factors and, therefore, have a

shorter range.

2.3 Summary

Chapter 2 presented a comprehensive exploration of radar systems, delving into their intri-

cate functions and historical evolution. Beginning with the definition of radar systems as

devices emitting and receiving electromagnetic waves for target detection, measurement,

and tracking, the chapter classified radar systems based on operating frequency bands,

incorporating codes from IEEE standard and ITU-R recommendation. The discussion

then turned to the Doppler effect, detailing the alterations in wave frequency due to rel-

ative motion between the radar source and observer. Noteworthy distinctions between

coherent and incoherent radar systems were introduced, along with the concept of the

micro-Doppler effect. Additionally, an examination of signal waveforms in radar systems

was included, covering pulsed, CW, and FMCW radars, with insights into their advan-

tages and applications. The chapter culminates in an exploration of the radar equation,

revealing two distinct radar range equations: one for pulsed radars and one for FMCW

radars. Addressing key parameters such as signal-to-noise ratio, radar cross-section, sys-

tem losses, and atmospheric attenuation, Chapter 2 provided a comprehensive and invalu-

able resource, offering a nuanced foundation for understanding the diverse applications

and complexities of radar systems across historical and contemporary contexts.



Chapter 3

UAS Detection by X-Band Pulsed
Radar

In the dynamic scenario of modern warfare, the use of UASs has become increasingly

prevalent. Recent conflicts around the world have highlighted the strategic importance of

drones in war operations. In 2022, the conflict between Russia and Ukraine has witnessed

significant use of drones for reconnaissance and intelligence gathering. News reports, such

as those from BBC News [58], highlight instances in which Russian and Ukrainian forces

deploy drones for surveillance along the front lines. In 2023, the ongoing conflicts that

involve the organization of Israel and Hamas, the use of drones, for military purposes,

has become a growing concern. According to reports from The New York Times [59],

Hamas has employed drones to carry out surveillance and even deploy explosives over

enemy troops.

As the role of drones evolves in the theater of war, the need for effective drone de-

tection technologies has become paramount. The ability to detect and respond to these

drones promptly is vital for safeguarding civilian populations and military assets. Radar

technology, in conjunction with other detection methods, plays a key role in improving

situational awareness and mitigating the threat posed by such unmanned aircraft [60].

In the context of drone detection, radar systems can perform real-time drone detection

and tracking, providing valuable information for a timely response. Radar has several

advantages, including long-range detection - providing early warning to security forces,

all-weather capability - radar is not affected by adverse weather conditions, and indepen-

dence from lighting conditions - radar operates effectively day and night - making it a

reliable technology for continuous monitoring [61]. Despite their advantages, radar detec-

tion also has some challenges, such as false positives - mistaking birds or other objects

for drones - and limited identification - it may not provide detailed information about the
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drone type or payload [60].

Considering the UAS detection by radar systems mentioned above, the present chapter

has the following contributions:

• Proposition of one method of radar performance analysis. This is done through

the radar range equation and known target parameters. Comparison of the pro-

posed method and the radar range equation helps infer the value of the system loss

parameter.

• Comparison of the detection range of the simulated data between AREPS and the

proposed method, with respect to the detection probability of a commercial UAS.

• Evaluation of the proposed method based on field measurements, using the Furuno

FAR-2117 X-band pulsed radar and the DJI Phantom IV UAS.

The remainder of this chapter is organized as follows: Section 3.1 formulates the

problem of UAS radar detection by an X-band pulsed radar, regarding the existing in-

frastructure of the Brazilian Navy and previous works in that area. In the following,

Section 3.2 introduces the mathematical formulation for the two proposed methods for

analyzing the radar range equation and shows how the comparison between them both

helps to determine the system loss parameter of a radar system. Section 3.3 presents the

employed radar and UAS on the field measurements, as well as the drone’s RCS simula-

tion. Section 3.4 discusses the numerical results by comparing the simulations and the

field measurements, and finally, Section 3.5 presents the final remarks of this chapter.

3.1 Problem Formulation

Radar detection of UAS stands out because it overcomes some of the main limitations of

other types of detection [62]. As it is already consolidated and widely used in military

and automotive applications, radar has been used in several studies on UAS detection.

For example, in [63], a pulsed radar operating in the Ku-band was used to analyze the

detection probability of 3 UASs with RCS of, respectively, 0.5 m2, 1 m2, and 1.5 m2.

According to the authors, it is possible to detect them with a high probability of detec-

tion at a distance of up to 1000 m. In [64], the authors analyzed the use of a FMCW

radar, operating in the X-band, for the detection of UAS. They used a fixed-wing and

a quadrotor UAS. According to the work, it was possible to detect the fixed wing at a
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distance of 600 m, while a quadrotor was detected at 400 m due to a lower RCS in the

configuration proposed by the authors. In [65], the focus is on the impact of flying birds

on the detection and identification of commercials UASs by radar. The researchers used

a Ku-band pulse Doppler phased array radar to collect echoes from a pigeon and a com-

mercial UAS (DJI Phantom 3 Vision). It was possible to detect the bird and the UAS at

a distance of 12 and 11 km, respectively. The statistical results revealed that flying birds

and drones exhibit similar RCS, velocity range, signal fluctuation, and signal amplitude.

Importantly, the study suggests that the interference caused by flying birds significantly

lowers the identification probability of UASs in radar automatic target recognition. In

general, the findings highlight flying birds as a major source of interference in radar detec-

tion and identification of consumer drones, particularly in airport environments. In [66],

the authors developed a small, low-powered radar system based on the ubiquitous radar

concept, which can detect and track small commercial drones at ranges up to 2 km. The

system uses a FMCW waveform at 8.75 GHz (X-band). Their system was tested with a

DJI Phantom 4 drone, which has a low RCS and can fly at low altitudes and speeds. The

tests showed that the system was able to detect and track the drone from the beginning

to the end of the flights, with excellent range-speed association and acceptable azimuth

accuracy. The system also achieved a detection probability of more than 0.7 for a false

alarm probability of 10−3. Furthermore, the authors used the received power data from

the drone echoes to compute the drone RCS. They found that the drone RCS had an

average value of 0.02 m2 and followed an exponential distribution, which corresponds to

a Swerling 1 target model.

Additionally, in [67], the authors presented a relatively new concept employing a

multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM)

radar system for drone detection and localization in real-time. The system used a 4x4

MIMO patch antenna array connected to software defined radios and operated at 4.05 GHz

carrier frequency and 66.67 MHz bandwidth. The authors applied OFDM modulation

with interleaved subcarriers for each transmit antenna and Fourier beam forming for

direction-of-arrival estimation. Under test, the system successfully detected a DJI Phan-

tom 3 Standard drone in a real-world scenario, despite the high clutter level from a metal

balustrade, up to 27 m. The other technique of UAS detection using a radar system is

the measurement of the micro-Doppler effect. For example, in [68], the authors proposed

a unique method for extracting micro-Doppler characteristics, using spectral kurtosis to

classify loaded or unloaded UASs. For this, they used a coherent pulsed radar, named

NetRAD, which operates at 2.4 GHz (S-band) and the DJI Phantom Vision 2+, which
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hovered at 70 m and flew approximately from 90 m to 60 m from the radar. Using six

different payloads configurations (unloaded, 200 g, 300 g,400 g, 500 g, and 600 g), the

proposed feature achieves an average payload identification accuracy of 92.61%.

In general, the above-mentioned works investigated the use of radars with dedicated

and ground-based infrastructure for drone detection. In this context, since no study or

investigation has been found in the literature on the use of an X-band pulsed maritime

radar for drone detection and, considering that the Brazilian Navy already has several

radars of this type installed on ships and in coastal areas for navigation and monitoring

of maritime traffic, this chapter proposes and analyzes the performance of the FAR-2117

radar, from Furuno® company, for the detection of a commercial UAS, the Phantom IV

from DJI® company. The choice of this specific drone is due to the relationship between

its significant size (L) and the wavelength (λ) of the X-band radar, with L ≈ 10λ. This

value places the drone on the limit between the resonance and optical regions, shown in

Figure 2.10. In the former region there is a greater oscillation in the RCS of the UAS

and therefore a lower probability of drone detection, while in the latter region there is a

tendency towards stabilization of the RCS oscillations and, therefore, a greater probability

of drone detection. This investigation is initially carried out through simulation and, later,

via field measurement with the Phantom IV from DJI company.

3.2 Mathematical Formulation

Considering (2.22) presented in Chapter 2, observe that to analyze and choose a radar

system for a given purpose, it is necessary to know all the parameters of the equation

for a determined Pd and Pfa, which are generally not widely available by manufacturers.

Since both Ei(n) and (S/N)1 depend on Pd and Pfa, then, for simplicity, replace (2.14)

in (2.22) to get just one variable, (S/N)n, dependent on Pd and Pfa. Thus

R4
max =

PtG
2λ2σe−2αR

(4π)3kT0Brx
w F (S/N)nLfLs

. (3.1)

To overcome the difficulties of obtaining all the parameters of (3.1) to perform a radar

range analysis, take the ratio between two different targets, with their own (S/N)n values
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((S/N)n,1 and (S/N)n,2), RCS values (σ1 and σ2), and fluctuation loss (Lf1 and Lf2), then

R4
max1

R4
max2

=

PtG
2λ2e−2αR

(4π)3FkT0Brx
w Ls

σ1

Lf1(S/N)n,1
PtG

2λ2e−2αR

(4π)3FkT0Brx
w Ls

σ2

Lf2(S/N)n,2

. (3.2)

Note that, except for Lf and σ, all other parameters are uniquely dependent on the

radar system design requirements. Except for (S/N)n which also depends on Pd and Pfa

of each target. Thus, considering that the radar system operates in the same conditions

for both targets, then (3.2) can be simplified as

R4
max1

R4
max2

=
σ1Lf2(S/N)n,2
σ2Lf1(S/N)n,1

. (3.3)

Replacing (2.13) in (3.3) with the proper indices

R4
max1

R4
max2

=

σ1Lf2

[
−5 log (n) +

(
6, 2 +

4, 54√
n+ 0, 44

)
log (A2 + 0.12A2B2 + 1.7B2)

]
σ2Lf1

[
−5 log (n) +

(
6, 2 +

4, 54√
n+ 0, 44

)
log (A1 + 0.12A1B1 + 1.7B1)

] , (3.4)

in which Ai = ln (0.62/Pfai) and Bi = ln [Pdi/(1− Pdi)], i = {1, 2}.

Therefore, two methods of analyzing the parameters Rmax, Pd, Pfa of a radar for a

given target are proposed, which are described below.

Method I: This method uses (3.1) for an individual analysis, which requires knowl-

edge of all radars (Pt, G, λ, α, F , Brx
w and Ls) and the target parameters (σ and Lf ). The

radar parameters can be found in its Operating Manual [69], in which Ls will be varied

over a set of possible values, due to the difficult in obtaining the correct value from the

manufacturer. The value of σ of the drone (target) will be estimated by simulations, while

Lf will be obtained from the values of Pd and Pfa and Figures 2.11 and 2.12 depending

on the Swerling case in which the drone fits.

Method II: This method, using (3.3), offers a comparative analysis. Knowing the

parameters σ1, Lf1 , Pd1 , Pfa1 and Rmax1 of a reference target, it is possible to indirectly

determine one of the parameters (σ2, Lf2 , Pd2 , Pfa2 or Rmax2) from another target of

interest.
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3.3 Materials and Method

The radar, model FAR-21x7 from Furuno company, is built to meet the exact perfor-

mance standards stipulated by the International Maritime Organization (IMO) and the

International Electrotechnical Commission (IEC), and therefore follows all specifications

and resolutions of these organizations. This type of radar can be X-band or S-band, have

antennas of different sizes, rotation speeds, and different transmission power. Basically,

this radar consists of a rotating antenna, an RF transceiver, and a monitor. The radar,

antenna, and transceiver models used for field measurements in this thesis are, respec-

tively, FAR-2117, XN-24AF, and RTR-078. Table 3.1 shows the specifications of the radar

used.

Table 3.1: Furuno FAR-2117 radar’s technical specifications.

Parameter Description
Frequency (f) 9410 MHz
Wavelength (λ) 31.9 mm

Polarization Horizontal
Transmit Power (Pt) 12 kW

Antenna Length 2.5 m
Antenna’s Rotation Speed 24 rpm

Antenna Gain (G) 31.5 dB
Horizontal Beam Width 0.95◦

Vertical Beam Width 20◦

Pulse Length (PL) 0.07/0.15/0.3/0.5/0.7/1.2 µs
Pulse Repetition Frequency (PRF) 3000/1500/1000/600 Hz

Receiver Bandwidth (Brx
w ) 60 MHz

Noise Figure (F) 6 dB

The Furuno FAR-2117 radar is installed on top of the building of the Geosciences

Institute at Praia Vermelha Campus of the Universidade Federal Fluminense (UFF),

located in Niterói, RJ, and faces Guanabara Bay, as shown in Figure 3.1. The antenna

altitude in relation to sea level is 32 m. The atmospheric conditions on the day of the

measurement were favorable, with few clouds and no rain over the bay.

The UAS used was the DJI Phantom IV, shown in Figure 3.2. This aircraft is made

up of four propellers, has a high-resolution camera, a built-in GPS, and the majority of

its structure is built with plastic. Furthermore, this quadcopter measures approximately

35 cm diagonally and weighs approximately 1.38 kg.

To estimate the RCS of the drone, a simulation was carried out using software Feko®

from Altair® company. Altair’s Feko® is a comprehensive tool for high-frequency electro-
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Figure 3.1: Radar Furuno FAR-2117’s location, with Guanabara Bay in the background.

Figure 3.2: DJI Phantom IV.

magnetic simulations, used across various industries including aerospace, defense, automo-

tive, communications, and consumer electronics [70]. It’s a robust tool for designing and

optimizing connected products, ensuring EMC compliance, and advancing radar technolo-

gies. Among other capabilities, this software is used for antenna design and placement,

radio coverage, network planning, and spectrum management. Furthermore, Feko® per-

forms RCS and scattering analysis. It enables customers to analyze performance for a

wide range of electrical sizes and industries [70].

Thus, with this software, the incidence of a plane wave, with the same radar oper-

ating frequency, on the drone was simulated, varying the azimuth angles (ϕ) in steps of

1◦, as shown in Figure 3.3. The simulation was carried out using the Ray Launching Ge-

ometrical Optics (RL-GO) method, which is a technique that uses ray tracing to model

the dispersion of electromagnetic waves based on the theories of propagation, reflection,

and refraction. This method uses fewer computational resources and has relatively high

accuracy for calculating RCS of drones [70].

After estimating the RCS of the drone, a simulation of the radar equation was carried
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Figure 3.3: Simulation set up of DJI Phantom IV’s RCS at Feko®.

out in the MATLAB® software, using the two analysis methods, presented in Section 3.2,

to analyze the drone’s maximum detection distance.

For Method I, it was used the parameters of the radar FAR-2117 presented in Ta-

ble 3.1, considering the radar operating with fp = 3000 Hz, PL = 0.07 µs and n = 20

given by (2.12), these parameters allow the radar to emit its pulses at a faster interval

with a greater resolution, being the best configuration to detect near and small targets.

The system losses, Ls, were varied from 10 to 20 dB in steps of 2dB, and thus, it is possible

to estimate Ls by comparing both methods. Additionally, the fluctuation loss, Lf , for

DJI Phantom IV, was obtained from Figure 2.11, for Pfa = 10−4 [71] and Pd varying from

0.1 to 1 in steps of 0.01, considering it a Swerling case I because its RCS varies from scan

to scan during the observation time. Table 3.2 shows the exact values of Lf for some Pd.

Table 3.2: Fluctuation loss of DJI Phantom IV as a Swerling case I.

Pd Lf (dB)
0.1 -1.8087
0.2 -0.9512
0.3 -0.1622
0.4 0.6372
0.5 1.4997
0.6 2.4857
0.7 3.6924
0.8 5.3282
0.9 8.0522
1 26.3426
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For Method II, for the reference target, data relating to a channel marking buoy

was used, taken from IMO resolution MSC.192(79) [71]. This resolution standardizes the

parameters and performance of marine radars, including the Furuno FAR-2117 radar.

According to this resolution, the parameters of the aforementioned buoy are σ1 = 1 m2,

Rmax1 = 3700 m, Pd1 = 0.8, and Pfa1 = 10−4, where Lf1 = 1.5424 dB = 1.4264 W was

taken from Figure 2.13 for the values of Pd1 and Pfa1 , considering the buoy as a steady

target or a Swerling case 0.

Subsequently, the Advanced Refractive Effects Prediction System (AREPS)® software

was used to simulate the radar range for the DJI Phantom IV, using data on the weather

conditions at the measurement location. This software is used in scientific research and

military operational analysis to calculate and display various aids for making decisions

regarding electromagnetic propagation, such as radar range prediction and the detection

probability of a given target by a specific radar [72]. To do so, it is necessary to insert data

from the radar, as shown in Figure 3.4, and the target, as shown in Figure 3.5, as well as

the local climatology, which in this case was used the standard atmosphere available in

the software.

Figure 3.4: AREPS’s screen to insert radar data.

Based on the simulated results in software MATLAB and AREPS, an evaluation was

made of the performance that the Furuno FAR-2117 radar has to detect the DJI Phantom

IV drone, as well as a comparison between the maximum detection distances obtained

via simulation and through field measurements. The radar was configured with a pulse
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Figure 3.5: AREPS’s screen to insert target data.

repetition frequency of 3000 Hz and pulse length of 0.07 µs. For field measurements with

the Phantom IV, a flight was made over Guanabara bay at the same altitude as the

radar antenna, with an average speed of 8 m/s. Besides, the measurement was performed

for Pd = 1, i.e., the UAS was present on the radar monitor screen in every antenna

scan without tracking loss. After being detected by the radar, the maximum detection

distance for this drone model was evaluated. Figure 3.6 shows the flight area in yellow,

as well as the Santos Dumont airport’s (red circle) and the UFF’s (blue circle) location.

It is important to cite that because of the proximity between the flight area and the

airport, regarding the safety and security, there were some limitations in flight altitude

and distance.

3.4 Numerical Results

Figure 3.7 shows the simulated RCS values of the Phantom IV, in dBsm, as a function of

the angle of incidence of the plane waves. Note that the highest RCS values occur when

ϕ = 90◦ and ϕ = 270◦, which correspond to cases in which the UAS has one of its sides

facing the radar direction. Considering equiprobability of occurrence for all values of ϕ,

the arithmetic mean of all RCS values will be adopted in the remainder of this section.
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Figure 3.6: Flight area’s, Santos Dumont airport’s and UFF’s location.

This value is approximately −15.28 dBsm or 0.0296 m2.

Figure 3.7: DJI Phantom IV’s RCS (σ), in dBsm, as function of ϕ.

With the previously estimated RCS value, it is possible to analyze the UAS’s Pd

as a function of the maximum detection distance using the two methods presented in

Section 3.2. Figure 3.8 shows the comparison between the two methods used.

Analyzing Figure 3.8, for Method I, note that the detection distance of the Phantom

IV decreases with increases in Ls and Pd. Assuming Pd = 0.9, we have Rmax = 1025 m

when Ls = 15 dB and Rmax = 730 m if Ls = 21 dB. Yet, for Pd = 0.99 and Ls = 15 dB,

Rmax = 570 m. Considering Pd = 0.5 and Ls = 11 dB, it is, theoretically, possible to

detect the DJI Phantom IV at Rmax = 2082 m.
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Figure 3.8: Pd as a function of distance, in meters, for Method I and II.

Using Method II, it is possible to observe that the Furuno FAR-2117 pulsed radar

can detect the DJI Phantom IV up to Rmax = 1000 m away with Pd = 0.9 , while

distances greater than Rmax = 2000 m between the radar and the UAS result in Pd = 0.24.

Moreover, comparing the curves in Figure 3.8, the system loss value, Ls, that makes

Method I closer to Method II is Ls = 15 dB, which was used as a parameter for the

continuity of the results. The error, in this case, calculating as the ratio between the

difference from both curves and Rmax from Method I, was 0, 59% and constant during

each point of the curve.

Therefore, for the radar range simulation in AREPS, data from Table 3.1 were used,

σ = 0.0296 m2 and Ls = 15 dB, considering yet σ for all elevation angles of the drone. Both

Figure 3.9 and Figure 3.10 show the result of this simulation, being the former extracted

from AREPS software and the latter created in Matlab software for better presentation,

in which a graph of the UAS’s Pd is presented, represented by color intervals, as a function

of its height in relation to sea level, in meters, and detection range, also in meters.

Analyzing both the Figures, it can be seen that for 1 ≥ Pd > 0.9 and h = 0 m

it is possible to detect the drone within approximately Rmax = 1250 m, although the

highest concentration of red dots (i.e., Pd > 0.9) is in the region where Rmax < 400 m.

Furthermore, if Rmax = 800 m, then it is possible to observe the UAS detection with

Pd > 0.9 in the region where h < 190 m.
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Figure 3.9: Pd as a function of the height in relation to sea level and detection distance
with σ = 0, 0296m2 e Ls = 15 dB extracted from AREPS software.

Figure 3.10: Pd as a function of the height in relation to sea level and detection distance
with σ = 0, 0296m2 e Ls = 15 dB created in Matlab software.

To compare with the simulations carried out previously, a field measurement was

performed using the FAR-2117 radar and the DJI Phantom IV, as described in Section 3.3.
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Figure 3.11: Phantom IV tracking on FAR-2117 radar monitor. The blue arrow indicates
the first detection and the red arrow indicates the maximum detection. The yellow and
green arrows represent, respectively, the directions in which Santos Dumont airport and
the Rio-Niterói bridge are located.

Figure 3.11 shows drone tracking by the radar monitor, where the blue arrow shows

the point of first detection of the aircraft at approximately 363 m away and the red

arrow indicates the maximum distance that it was possible to track the target on the

radar at approximately 425 m. Additionally, the green and yellow arrows indicate the

direction of the Rio-Niterói bridge and the Santos Dumont airport, respectively. Moreover,

Figure 3.12 illustrates the Phantom IV’s trajectory during the flight and its first and

maximum detection location.

Figure 3.12: Phantom IV’s trajectory during flight. The Orange mark represents the
radar location. The blue mark represents the first detection range and the red mark
represents the maximum detection range.

The difference between the maximum detection range in simulations (597 m using

Method I and II and about 400 m using AREPS) and the real measurement (425 m) is
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due to two factors. The first one is the increase in the system loss because it was used 80 m

more cables for the radar installation than the described in the radar installation manual.

This led to a radar performance degradation. The second one is the statistical nature of

the RCS of complex target such the DJI Phantom IV. Once it was used a deterministic

value (mean) to represent the UAS RCS in the simulations, then all the effects of the

RCS variation were avoided. Furthermore, it was observed during the measurements that,

depending on the direction of the drone in relation to the radar, its echo would become

intermittent due to the oscillations of the RCS with the azimuth angle. Furthermore, it

was possible to notice that the speed of the drone also caused a loss of energy in the echo.

For a speed above 13 m/s it was not possible to identify the drone on the radar monitor.

Finally, based on simulations and field measurements, it can be stated that it is

possible to detect a drone with low RCS that lies at the boundary between the Resonance

and the Optic regions using an X-band pulsed radar, originally designed for maritime

vessels. Therefore, and because it is a radar in common use in the Brazilian Navy, the use

of this type of radar to detect drones could take advantage of an existing infrastructure

and, consequently, reduce costs with installation or even acquisition of other radars for

that purpose.

3.5 Summary

This chapter discussed the use of the Furuno FAR 2117 pulsed radar, normally used in

maritime navigation, for detecting the DJI Phantom IV quadcopter. Simulations of RCS,

radar range, and detection probability were carried out for this type of UAS. Furthermore,

field measurements were made to prove the results obtained via simulation. Based on the

numerical results, it was possible to observe that the radar specifications were sufficient

to detect the drone, as indicated by the simulations. In field measurements, it was shown

that the radar used was able to detect the drone, with a high probability of detection, at

a maximum distance of 425 m. Finally, it was discussed that the difference between the

maximum detection distances in the simulations and measurements was due to the use

of more cables to install the radar, increasing the system losses, and the use of the RCS

value as a constant instead of a random variable.



Chapter 4

Statistical Analysis and Modeling of
UAS’s Radar Cross-Section

The advent of UASs has revolutionized various fields, including military, surveillance and

civilian applications. These aircraft exist in diverse shapes and sizes and their classification

is often based on weight. ANAC [73] classifies them into three main categories with

respect to their take-off weight, as shown in Table 4.1. However, in operational scenarios,

where determining the UASs weight becomes impractical, such as in a war or urban

areas, it is still necessary to differentiate those several types of UASs. The importance

of differentiating between drones in these environments is underscored by the concept

of RCS [74]. In modern warfare, accurate RCS differentiation enables military forces to

minimize the risk of misidentification and facilitate targeted responses. In urban areas,

where airspace is congested, distinguishing between drones of various sizes and capabilities

becomes essential for safety and security. Thus, understanding and differentiating RCS

values is vital for military operations, surveillance, and airspace management.

Table 4.1: ANAC’s UAS classification by take-off weight.

Category Take-off weight Models
Class 3 ≤ 25 kg DJI Phantom series, DJI Mavic
Class 2 > 25 kg and ≤ 150 kg Ehang184, DJI FlyCart 30
Class 1 > 150 kg MQ-9 Reaper, RQ-4 Global Hawk

Unlike geometric targets such as spheres and corner reflectors, which have a determin-

istic value for the RCS, the RCS of real and complex targets, such as the UASs, may not

be effectively modeled as a single constant [28]. For these targets, RCS strongly varies

with azimuth and elevation angles, frequency, and polarization of the radar transmitter

and receiver parts. As a consequence, RCS must be estimated by fitting an RCS dataset’s

histogram to distinct probability distributions [75]. This statistical analysis leads to sta-
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tistical models, which can be of utmost importance for precisely investigating the RCS

impact on radar detection.

In this context, the present chapter has the following contributions:

• A statistical analysis and modeling of the RCS of 9 different UASs, using three

criteria: LLK, AIC, and BIC.

• A comparison of the simulated and measured RCS values for the DJI Phantom IV

drone, showing the agreement between them and validating the simulation method.

• An evaluation of the impact of RCS modeling on the radar detection range, showing

how different probability distributions affect the performance of a radar system.

• An analysis of the mean values of the RCS values when changing the operating

frequency of a radar system and the elevation angle of the target.

The remainder of this work is organized as follows: Section 4.1 formulates the problem

of considering UAS’s RCS as a constant value and provides the motivation for this chapter.

In the sequel, Section 4.2 introduces the mathematical formulation of the three statistical

criteria used to measure the fit of the function in three different RCS datasets. Section

4.3 shows the materials and methods used in this chapter. More specifically, it presents

the UASs used for test and simulation and the methods used to create each RCS dataset,

as well as the RCS dataset measured provided by [29]. Furthermore, it also introduces

the method to choose the best function to model each RCS dataset. In Section 4.4,

the numerical results and statistical analysis of the different RCS datasets are discussed.

Finally, Section 4.5 presents the final remarks of Chapter 4.

4.1 Problem Formulation

As discussed in Subsection 2.2.2, RCS is a crucial parameter for radar detection, as it mea-

sures the reflectivity of targets and plays a pivotal role in determining their detectability

by radar systems. It depends on factors such as the size, shape, and composition of the

target, as well as the frequency of the incident electromagnetic wave [27]. Basically, tar-

gets with high RCS are more reflective and easier for radar systems to detect, whereas

targets with low RCS are less reflective and harder to detect. Furthermore, targets with

complex structure and geometry have a unique RCS signature that can be used for the

identification of the target [75].
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In this context, many works are focusing on studying the RCS of UASs. For example,

[76] investigated the influence of a small fixed-wing UAS’s RCS on the detection range of

an anti-drone system. Simulations of drone monostatic RCS were performed using real

parameters from two radars, with operating frequencies of 8.70−9.65 GHz and 3−16 GHz.

They found out that the UAS’s mean RCS value were −17.62 dBsm and −22.77 dBsm

each, achieving a detection range of 1784 m. In [77], the authors measured and analyzed

the monostatic RCS of nine different types of drones in an anechoic chamber, with fre-

quencies ranging from 26 GHz to 40 GHz. They showed that drones made of carbon fiber

are easier to detect than those made of plastic and styrofoam. In [78], a drone classifica-

tion was proposed using the monostatic RCS dataset provided by [77]. The classification

through the drone’s RCS signature was made by a new deep learning technique, called

long short-term memory-adaptive learning rate optimizing (LSTM-ALRO). Accordingly,

it was possible to achieve 99.88% of detection accuracy compared to the existing drone

classification model. Moreover, [79] analyzed the RCS statistical properties of nine differ-

ent commercial drones. To perform such an analysis, they measured their monostatic RCS

in an anechoic chamber at 9 GHz. According to them, the RCS behavior of investigated

drones is more in agreement with a random variable than a single constant number.

In general, previous works investigated the empirical values of RCS by solely measur-

ing and analyzing them in deterministic terms. To the best of the authors’ knowledge, the

statistical analysis and modeling of UASs’ RCS have not been thoroughly explored in the

literature. Therefore, this work proposes a statistical approach to model the RCS of nine

different UASs, employing a probability distribution that provides the best agreement

with the histogram of the simulated and measured RCS dataset. Two RCS datasets were

generated by simulations performed with Feko® software, and one RCS dataset was mea-

sured in an anechoic chamber and provided by [29]. Finally, but not least, comparative

analyses between the chosen probability distribution and the RCS datasets are provided,

in addition to an evaluation of the radar detection range.

4.2 Mathematical Formulation

In this chapter, three statistical criteria are used to perform probability distributions

selection: LLK, AIC, and BIC.

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters (θ)

of an assumed probability distribution, given some observed data (x). This is achieved
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by maximizing a likelihood function so that, under the assumed probability distribution,

the observed data are most probable. In other words, the parameters of each probability

distribution are varied, and the one with the maximum likelihood score, in relation to the

histogram generated with the samples of the simulated RCS, is selected [80]. Defining

Srv = {pd0, pd1, . . . , pdm−1} as the set of probability distributions, the likelihood of pa-

rameters θj = {θj,0, θj,1, θj,2, . . . , θj,kj−1} of the j-th probability distribution in Srv, being

m the number of probability distributions and kj the number of parameters of the j-th

probability distribution, considering an independent and identically distributed random

sample data set x = {x0, x1, x2, . . . , xn−1}, is given by

L(θj) =
n−1∏
i=0

f(θj|xi), (4.1)

∀j ∈ {0, 1, . . . ,m − 1}, where f(θj|xi) is the likelihood of parameters θj for a single

outcome xi ∈ x. In practice, it is often convenient to work with the natural logarithm of

the likelihood function, called the LLK, which can be expressed as

LLK(θj) = ln {L(θj)} =
n−1∑
i=0

ln {f(θj |xi)}. (4.2)

Since the logarithm is a monotonic function, the maximum of LLK(θj) occurs at the

same value of θj as the maximum of L(θj). Once LLK(θj) is maximized, the parameters

of the j-th probability distribution can be obtained through

θ̂jLLK = argmax
θj

LLK(θj). (4.3)

MLE is a usual criterion to estimate the best probability distribution that fits the

dataset. However, it does not consider the effect of overfitting the dataset. The fit of any

model can be improved by increasing the number of parameters, but there is a trade-off in

the increasing variance [80]. Overfitting can be considered by penalizing the complexity

of the given probability distribution. AIC and BIC criteria take this in consideration for

the j-th probability distribution in Srv, respectively, through

AIC(θj) = −2LLK(θj) + 2kj (4.4)

and

BIC(θj) = −2LLK(θj) + kj lnn, (4.5)

∀j ∈ {0, 1, . . . ,m − 1}, in which n is the number of samples of the dataset. As can be
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seen, for AIC and BIC, the penalty terms are 2kj and kj lnn, respectively. This means

that AIC puts larger penalty on probability distribution functions with a higher number

of parameters, while BIC additionally penalizes those regarding the number of samples

contained in the dataset. In general, the best probability distribution model is the one

with either the lowest AIC or BIC score [75]. Thus, the j-th probability distribution

parameters can be obtained by minimizing AIC and BIC scores, respectively, as

θ̂jAIC = argmin
θj

AIC(θj) (4.6)

and

θ̂jBIC = argmin
θj

BIC(θj). (4.7)

Since the actual score of the LLK, AIC and BIC criteria depend on the sample values

of the dataset, it is often convenient to work with their normalized versions. This is

achieved by

LLK(θ̂jLLK) =
LLK(θ̂jLLK)

max
j

LLK(θ̂jLLK)
, (4.8)

AIC(θ̂jAIC) =
AIC(θ̂jAIC)

max
j

AIC(θ̂jAIC)
, (4.9)

and

BIC(θ̂jBIC) =
BIC(θ̂jBIC)

max
j

BIC(θ̂jBIC)
, (4.10)

respectively. In the manner that it is obtained LLK(θ̂jLLK) ∈ [0, 1],AIC(θ̂jAIC) ∈ [−1, 0],

and BIC(θ̂jBIC) ∈ [−1, 0]. For simplicity, (4.8), (4.9), (4.10) will be denoted, respectively,

by LLKj, AICj, and BICj from now on. Thus, the best probability distribution, for each

criterion, is the one with the best score, that is, LLKj = 1, AICj = −1, or BICj = −1.

4.3 Materials and Method

In this section the methodology used is presented considering three different RCS datasets:

Datasets I, II, and III. Datasets I and II are the simulated DJI Phantom IV RCS for,

respectively, 9.41 GHz and a range of frequencies varying from 1 to 40 GHz. Dataset III is

a RCS database, available in [81], of nine different UAS measured in an anechoic chamber,

using frequencies varying from 26 to 40 GHz. Therefore, this section first introduces each

UAS used and its characteristics. Then, it shows how each RCS dataset was obtained
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and, finally, it explains how it was done to choose the best fitting distribution function to

model each dataset’s histogram.

4.3.1 UAS under simulation and test for statistical analysis

For this thesis, nine different types of UASs were used: DJI Phantom IV, DJI Mavic Pro,

DJI F450, DJI Matrice 100, Parrot AR.Drone, Helicopter Kyosho, HMF Y600, Walkera

Voyager 4, and a custom-built hexacopter. Figure 4.1 shows the previously mentioned

UASs, while Table 4.2 summarizes their dimensions and material compositions.

Figure 4.1: UAS under simulation and test for statistical analysis. From left to right
and from up to down, the UASs are: DJI Phantom IV, DJI Mavic Pro, DJI F450, DJI
Matrice 100, Parrot AR.Drone, Helicopter Kyosho, HMF Y600, Walkera Voyager 4, and
a custom-built hexacopter.

The simulations were carried out only for DJI Phantom IV using the Feko® software

from the Altair® company, as explained in the following subsections.

4.3.2 Dataset I

To create the RCS Dataset I, the simulations were performed assuming a horizontally

polarized plane wave at 9.41 GHz (i.e., λ = 0.0319 m) and DJI Phantom IV was used

as UAS under simulation. Moreover, the incidence of plane waves occurred in the far-
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Table 4.2: UAS characteristics.

UAS L (mm) Material compound
DJI Phantom IV diagonal, 350 plastic
DJI Mavic Pro diagonal, 335 plastic

DJI F450 diagonal, 450 plastic
DJI Matrice 100 diagonal, 650 carbon fiber
Parrot AR.Drone diagonal, 580 styrofoam
Helicopter Kyosho length, 780 plastic

HMF Y600 diagonal, 600 carbon fiber
Walkera Voyager 4 diagonal, 465 carbon fiber

Hexacopter diagonal, 900 carbon fiber

field region on the three-dimensional model of the UAS, as illustrated in Figure 4.2. The

method used to simulate the samples of the drone’s RCS was Ray Launching - Geometrical

Optics (RL-GO) because L > 10λ characterizes the Optics scattering region.

The assumed azimuth and elevation angles of the incident wave are, respectively,

ϕI = {ϕI
0, ϕ

I
1, . . . , ϕ

I
NI−1} and αI = {αI

0, α
I
1, . . . , α

I
MI−1}, where the index I represents the

Dataset I and the indexes N I and M I represent the size of ϕI and αI , respectively. The

RCS Dataset I is then defined as a matrix ΣI ∈ RMI×NI , in which each line corresponds

to a vector with RCS values for a single elevation angle and each column corresponds to

a vector with RCS values for a single azimuth angle, as

ΣI =


σI
0,0 σI

0,1 . . . σI
0,NI−1

σI
1,0 σI

1,1 . . . σI
1,NI−1

... . . . ...

σI
MI−1,0 σI

MI−1,1 . . . σI
MI−1,NI−1

 . (4.11)

In this manner, the set of RCS values, called now Subdataset I, that will be analyzed

and modeled in this chapter is given by σI
i ∈ ΣI |σI

i = {σI
i,0, σ

I
i,1, . . . , σ

I
i,NI−1}, with

i = 0, 1, . . . ,M I − 1, which corresponds to the i-th line of the matrix ΣI . In other words,

each element of Subdataset I is composed by the simulated RCS values for every element

of ϕI and for one fixed element of αI .

4.3.3 Dataset II

To create the RCS Dataset II, simulations were performed assuming a horizontally polar-

ized plane wave at a range of frequencies varying from 1 to 40 GHz in steps of 1 GHz,

and the DJI Phantom IV was also used as UAS under simulation. Additionally, in this
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Figure 4.2: RCS simulation of DJI Phantom IV in Feko® for Dataset I.

simulation were considered a typical radar aperture of only 20◦. Moreover, as in Dataset

I, the incidence of plane waves occurred in the far-field region on the three-dimensional

model of the UAS, as illustrated in Figure 4.3. The method used to simulate the samples

of the drone’s RCS was also Ray Launching - Geometrical Optics (RL-GO) as used in

Dataset I.

The assumed frequencies and azimuth and elevation angles of the incident wave are,

respectively, f II = {f II
0 , f II

1 , f II
2 , . . . , f II

KII−1}, ϕII = {ϕII
0 , ϕII

1 , . . . , ϕII
NII−1} and αII =

{αII
0 , αII

1 , . . . , αII
MII−1}, where the index II represents the Dataset II and the indexes KII ,

N II and M II represent the size of f II , ϕII and αII , respectively. N II and M II are the

same for every simulated frequency. The RCS Dataset II is then defined as a matrix

ΣII
f ∈ RMII×NII , in which each line corresponds to a vector with RCS values for a single

elevation angle and each column corresponds to a vector with RCS values for a single
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azimuth angle, for one frequency, f ∈ f II , as

ΣII
f =


σII
0,0 σII

0,1 . . . σII
0,NII−1

σII
1,0 σII

1,1 . . . σII
1,NII−1

... . . . ...

σII
MII−1,0 σII

MII−1,1 . . . σII
MII−1,NII−1

 . (4.12)

In this way, the set of RCS values that will be analyzed and modeled in this chapter,

called now Subdataset II, is given by σII
i,f ∈ ΣII

f |σII
i,f = {σII

i,0, σ
II
i,1, . . . , σ

II
i,NII−1}, with

i = 0, 1, . . . ,M II − 1, which corresponds to each line of the matrix ΣII
f for a single

frequency, f ∈ f II . In other words, each element of Subdataset II is composed by the

simulated RCS values for every element of ϕII , for one fixed element of αII , and for one

frequency of f II .

Figure 4.3: RCS simulation of DJI Phantom IV in Feko® for Dataset II.

4.3.4 Dataset III

For the Dataset III, measurements were made in an anechoic chamber at Aalto University,

Finland, by [29], considering only horizontally polarized plane waves. The setup included

transmitting (TX) and receiving (RX) antennas, vertically and horizontally polarized,

on a mast, with frequencies varying from 26 to 40 GHz in an increment of 1 GHz. A

Vector Network Analyzer (VNA) served as both a signal generator and a recorder. Each

drone model took approximately 5 hours to measure, necessitating two sessions, with and
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without a power amplifier on the TX path. Calibration involved connecting the TX and

RX ports through a 20 dB attenuator, compensating for losses in cables and equipment,

and establishing a reference signal level.

The UASs used were placed on a rotating pillar on the opposite side of the antennas,

initially with its bottom facing the antennas. There are two rotating axes: the azimuth

(θ-axis) and the center-axis (ϕ-axis), as shown in Figure 4.4 [29]. The angular parameters

were defined as θ ∈ [−90◦, 90◦] and ϕ ∈ [0◦, 180◦], with increments of 1◦. By rotating

the θ-axis and the ϕ-axis is obtained the measurements from the bottom hemisphere,

illustrated in Figure 4.5, simulating radar exposure from a ground-based station. The

distance between the antennas and the UASs was 5.8 m, maintaining a focus on half of

the sphere to reduce measurement time while capturing crucial azimuth and elevation

angle information [29].

Figure 4.4: Schematic view of the measurement setup [29].

For a better comparison with the Dataset I and II, consider, without loss of generality,

that the assumed frequencies and azimuth and elevation angles of the incident wave are,

respectively, f III = {f III
0 , f III

1 , f III
2 , . . . , f III

KIII−1}, ϕIII = {ϕIII
0 , ϕIII

1 , . . . , ϕIII
NIII−1} and

αIII = {αIII
0 , αIII

1 , . . . , αIII
MIII−1}, where the index III represents the Dataset III and the

indexes KIII , N III and M III represent the size of f III , ϕIII and αIII , respectively. N III

and M III are the same for every simulated frequency. The RCS Dataset III is then defined

as a matrix ΣIII
f ∈ RMIII×NIII , in which each line corresponds to a vector with RCS values

for a single elevation angle and each column corresponds to a vector with RCS values for
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Figure 4.5: Illustration of the azimuth and elevation angles considered in the measure-
ment.

a single azimuth angle, for one frequency, f ∈ f III , as

ΣIII
f =


σIII
0,0 σIII

0,1 . . . σIII
0,NIII−1

σIII
1,0 σIII

1,1 . . . σIII
1,NIII−1

... . . . ...

σIII
MIII−1,0 σIII

MIII−1,1 . . . σIII
MIII−1,NIII−1

 . (4.13)

Thus, the set of RCS values that will be analyzed and modeled in this chapter, now

called Subdataset III, is given by σIII
i,f ∈ ΣIII

f |σIII
i,f = {σIII

i,0 , σIII
i,1 , . . . , σIII

i,NIII−1}, with

i = 0, 1, . . . ,M III − 1, which corresponds to each line of the matrix ΣIII
f for a single

frequency, f ∈ f III . In other words, each element of Subdataset III is composed by the

measured RCS values for every element of ϕIII , for one fixed element of αIII , and for one

frequency of f III .
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4.3.5 Choosing the best fitting distribution function

The set of probability distributions, Srv = {Exponential, Gamma, Generalized Extreme

Value, Generalized Pareto, Log-normal, Nakagami, Rayleigh, Rician, Weibull}, were cho-

sen to represent random variables statistically belonging to R+ and because they are

commonly used in the telecommunications field. In this regard, the statistical modeling

is performed as follows for each Subdataset (the Subdataset superscript is omitted) and

each frequency tone:

• Step 1: Select αi, defining a unique RCS subdataset σi,f for modeling with a fixed

elevation angle and only one frequency.

• Step 2: For each Srv element, calculate LLKj, AICj, and BICj scores through

Equations (4.8), (4.9), and (4.10), respectively.

• Step 3: Evaluate the number of occurrences of i) LLKj = 1, ii) AICj = −1, and

iii) BICj = −1. These are denoted NLLKj
, NAICj

, and NBICj
, respectively, for the

j-th probability distribution. They are incremented for each αi.

• Step 4: Return to Step 1 for another not previously selected αi, until there is

unused i ∈ {0, 1, . . . ,M − 1}. This step occurs M times.

• Step 5: Calculate the relative frequencies RLLKj
= NLLKj

/M , RAICj
= NAICj

/M ,

and RBICj
= NBICj

/M .

• Step 6: Evaluate the average relative frequencies Ravgj = (RLLKj
+RAICj

+RBICj
)/3.

• Step 7: The probability distribution chosen to model the Subdatasets for ev-

ery element of α and only one frequency is the one with the highest Ravgj ,∀j ∈
{0, 1, . . . ,m− 1} associated with the set Srv.

4.4 Numerical Results

In this section, the results of the statistical analysis and modeling of the three RCS

subdatasets are presented. Subsection 4.4.1 discusses the Dataset I created by simulation

using a 3D model of the DJI Phantom IV for a horizontally polarized wave at 9.41 GHz.

Subsection 4.4.2 brings the results of the analysis of Dataset II created, also, by simulation

using DJI Phantom IV 3D model, but for a horizontally polarized wave ranging from

1 GHz to 40 GHz. Finally, in Subsection 4.4.3, the results for Dataset III are presented.
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Additionally, for this section, the probability distributions used for fitting, analysis

and presented in figures and tables are number as follows:

1. Exponential

2. Gamma

3. Generalized Extreme Value

4. Generalized Pareto

5. Log-normal

6. Nakagami

7. Rayleigh

8. Rician

9. Weibull

The PDFs and cumulative distribution functions (CDFs) of these probabilities distri-

butions are provided in Appendix A.

4.4.1 Dataset I

The RCS simulation assumed ϕI = {0◦, 2◦, 4◦, . . . , 358◦} and αI = {−90◦,−85◦,−80◦, . . . ,

90◦}. To analyze the impacts of RCS modeling in Equation (2.22), Furuno FAR-2117 radar

specifications were considered as described in Table 3.1 with Ls = 15 dB.

Table 4.3 shows the normalized scores achieved by each probability distribution, for

αI
i varying in steps of 10◦ for a better presentation. The colored cells represent the best

probability distribution for each criterion, being the yellow ones for LLKj, green ones for

AICj and blue ones for BICj.

Note that for LLK, the best fitting is the Generalized Pareto probability distribution.

However, when the penalizing factor for the number of parameters in AIC and BIC are

introduced, the Generalized Pareto function presents a worst fit than the Exponential

probability distribution in both criteria. This occurs due to the lower number of param-

eters in the latter distribution. Figure 4.6 shows the relative frequency of all probability

distributions for each criterion. Observe that, for the Generalized Pareto distribution,
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Table 4.3: LLKj, AICj and BICj scores for each probability distribution at some elevation
angles.

Elevation Angle (αI)
-90° -80° -70° -60° -50° -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

P
ro

b
ab

il
it
y

D
is

tr
ib

u
ti

on
s

1
LLK1 -0.244 0.921 0.999 0.967 0.990 0.983 0.965 0.982 0.999 0.998 0.999 0.999 0.991 0.982 0.997 0.994 0.994 0.989 -0.595
AIC1 0.246 -0.931 -1 -0.969 -0.992 -0.985 -0.968 -0.984 -1 -1 -1 -1 -0.992 -0.986 -1 -0.999 -1 -0.996 0.602
BIC1 0.249 -0.939 -1 -0.973 -0.995 -0.988 -0.971 -0.986 -1 -1 -1 -1 -0.995 -0.989 -1 -1 -1 -1 0.614

2
LLK2 0.984 0.973 1 0.999 1 0.998 0.997 0.997 0.999 0.998 1 0.999 1 0.988 0.997 0.994 0.995 0.999 0.965
AIC2 -0.985 -0.978 -0.997 -0.999 -1 -0.998 -0.999 -0.997 -0.998 -0.998 -0.998 -0.998 -1 -0.990 -0.997 -0.997 -0.996 -1 -0.967
BIC2 -0.987 -0.978 -0.992 -0.999 -1 -0.998 -1 -0.996 -0.995 -0.994 -0.996 -0.995 -1 -0.990 -0.994 -0.993 -0.990 -0.993 -0.971

3
LLK3 1 0.956 0.962 0.981 0.991 0.980 1 0.980 0.981 0.970 0.975 0.984 0.993 0.965 0.956 0.992 0.983 0.922 1
AIC3 -1 -0.955 -0.956 -0.978 -0.989 -0.978 -1 -0.978 -0.978 -0.967 -0.973 -0.981 -0.991 -0.965 -0.953 -0.992 -0.981 -0.915 -1
BIC3 -1 -0.944 -0.947 -0.974 -0.985 -0.975 -0.998 -0.975 -0.972 -0.960 -0.967 -0.976 -0.989 -0.963 -0.946 -0.984 -0.969 -0.897 -1

4
LLK4 0.684 1 0.999 0.986 0.993 0.999 0.977 0.999 1 1 0.999 1 0.994 1 1 1 1 1 0.447
AIC4 -0.683 -0.999 -0.994 -0.983 -0.991 -0.998 -0.977 -0.997 -0.996 -0.997 -0.997 -0.997 -0.992 -1 -0.997 -1 -0.997 -0.994 -0.442
BIC4 -0.681 -0.990 -0.985 -0.979 -0.987 -0.995 -0.975 -0.994 -0.990 -0.990 -0.991 -0.991 -0.990 -0.997 -0.990 -0.992 -0.985 -0.977 -0.435

5
LLK 0.984 0.838 0.703 0.938 0.879 0.943 0.970 0.621 0.807 0.823 0.834 0.815 0.922 0.917 0.789 0.634 0.509 0.580 0.965
AIC -0.985 -0.841 -0.699 -0.938 -0.879 -0.943 -0.971 -0.620 -0.805 -0.822 -0.832 -0.814 -0.921 -0.919 -0.788 -0.634 -0.506 -0.575 -0.967
BIC -0.987 -0.838 -0.693 -0.937 -0.878 -0.943 -0.972 -0.618 -0.802 -0.818 -0.829 -0.810 -0.921 -0.919 -0.784 -0.628 -0.497 -0.563 -0.971

6
LLK 0.984 0.782 0.955 0.975 0.984 0.980 0.969 0.985 0.987 0.944 0.953 0.987 0.979 0.950 0.975 0.946 0.980 0.945 0.964
AIC -0.985 -0.784 -0.952 -0.975 -0.984 -0.980 -0.971 -0.985 -0.986 -0.943 -0.952 -0.986 -0.979 -0.951 -0.974 -0.949 -0.981 -0.945 -0.967
BIC -0.987 -0.780 -0.947 -0.974 -0.984 -0.980 -0.971 -0.985 -0.983 -0.940 -0.949 -0.983 -0.979 -0.951 -0.971 -0.945 -0.975 -0.938 -0.971

7
LLK7 0.984 0.994 0.984 0.995 0.985 0.999 0.991 0.979 0.988 0.997 0.999 0.984 0.991 0.997 0.997 0.958 0.958 0.982 0.965
AIC7 -0.985 -1 -0.981 -0.995 -0.985 -0.999 -0.993 -0.979 -0.987 -0.997 -0.997 -0.982 -0.991 -0.999 -0.997 -0.960 -0.959 -0.982 -0.967
BIC7 -0.987 -1 -0.976 -0.995 -0.985 -0.999 -0.994 -0.978 -0.984 -0.993 -0.995 -0.980 -0.991 -1 -0.994 -0.956 -0.952 -0.975 -0.971

8
LLK -0.105 0.838 0.703 0.938 0.879 0.943 0.970 0.621 0.807 0.823 0.834 0.815 0.922 0.917 0.789 0.634 0.509 0.580 -0.270
AIC 0.107 -0.847 -0.702 -0.940 -0.881 -0.945 -0.973 -0.622 -0.807 -0.824 -0.834 -0.815 -0.923 -0.921 -0.790 -0.636 -0.509 -0.581 0.275
BIC 0.109 -0.854 -0.701 -0.944 -0.883 -0.947 -0.976 -0.622 -0.806 -0.824 -0.833 -0.815 -0.925 -0.924 -0.789 -0.635 -0.507 -0.579 0.283

9
LLK9 0.981 0.987 0.999 1 0.998 1 0.996 1 0.999 0.999 0.999 0.999 0.999 0.991 0.997 0.995 0.997 0.998 0.958
AIC9 -0.982 -0.993 -0.997 -1 -0.998 -1 -0.998 -1 -0.998 -0.998 -0.998 -0.998 -0.999 -0.993 -0.997 -0.998 -0.998 -0.999 -0.960
BIC9 -0.983 -0.992 -0.992 -1 -0.998 -1 -0.998 -1 -0.995 -0.995 -0.995 -0.995 -0.999 -0.993 -0.994 -0.994 -0.99 -0.992 -0.964

RLLKj
= 0.43, RAICj

= 0.16, and RBICj
= 0.08, which gives Ravgj = 0.22. On the other

hand, the Exponential distribution has RLLKj
= 0, RAICj

= 0.35, and RBICj
= 0.46, and

thus Ravgj = 0.27.

Figure 4.6: Relative frequency of each probability distributions for LLK, AIC, and BIC.
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Once its average relative frequency was the highest, the Exponential probability dis-

tribution is chosen to model the entire RCS datasets’ histogram for all elevation angles

individually, i.e., each subdataset. However, it is important to note that some elevation

angles of the incident wave are impractical, depending on the radar used. Although the

RCS has been simulated for αI varying from -90◦ to 90◦, typical maritime radars have

30◦ of beamwidth vertical aperture, corresponding to αI being bounded between -15◦ and

15◦. Table 4.4 shows the parameter that defines the Exponential random variable γ for

all simulated elevation angles.

To perform the analysis of the PDF and CDF of the Exponential probability distri-

bution, the horizontal plane of the radar antenna corresponding to an elevation angle,

αI
19 = 0◦, was used. Thus, Exponential’s PDF, in function of x, is given by the following

equation

f(x) =


1
γ
e−

x
γ , x ≥ 0

0 , x < 0
, (4.14)

in which, γ = 0.0284 for αI
19 = 0◦. Figure 4.7 shows the Exponential PDF and the RCS

dataset histogram for αI
19 = 0◦. Note that the RCS values, in the histogram, have a higher

density for σI
19,j ≤ 0.01 m2. Yet, from 0 m2 to 0.03 m2, the density decreases from 30 to

15, which corresponds approximately to a drop in 50%. Moreover, the higher σI
19,j, the

lower the density, corresponding to a typical Exponential PDF characteristic.

The Exponential’s CDF, also in function of x, is given by the following equation

F (x) =

1− e−
x
γ , x ≥ 0

0 , x < 0
, (4.15)

in which, γ = 0.0284 for αI
19 = 0◦. Figure 4.8 shows the curves of Exponential and Dataset

I’s CDFs, FdsI (σ
I
19,j). Note that there is a probability of 0.9 or 90% for x ≤ 0.0655 and

σI
19,j ≤ 0.0652, i.e. FdsI (σ

I
19,j ≤ 0.0652) = F (x ≤ 0.0655) = 0.9, which yields an error of

100× |x− σI
19,j|/σI

19,j = 100× |0.0655− 0.0652|/0.0652 = 0.46% between the RCS values.

For FdsI (σ
I
19,j ≤ 0.0198) = F (x ≤ 0.0199) = 0.5, it results in an error of 0.5%. Yet, for

x = σI
19,j = 0.1m2, it can be seen that the Exponential and dataset CDFs yields 0.97 and

0.99 of probability, respectively, which correspond to 2% of difference.

One way to define whether a curve is well represented by another is through the linear
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Figure 4.7: Histogram of simulated RCS values and PDF of the fitted Exponential distri-
bution, when αI

19 = 0◦.

correlation, given by

cy,x =

∑n
z=1(F (y)z − F (y))(F (x)z − F (x))√∑n

z=1(F (y)z − F (y))2
∑n

z=1(F (x)z − F (x))2
, (4.16)

in which F (y)z and F (x)z are the individual sample points indexed with z. F (y) and

F (x) are the means of the F (y)z and F (x)z datasets, respectively. n is the total number

of data points or observations. Equation (4.16) measures the strength and direction of

the linear relationship between two variables. The value of cy,x lies between −1 and 1,

where −1 indicates a perfect negative linear correlation, 1 indicates a perfect positive

linear correlation, and 0 indicates no linear correlation. For the curves of Exponential

and Dataset I’s CDFs, it is obtained cy,x = 0.9965.

To evaluate the impact of RCS modeling on Equation (3.1) and to compare the results

shown in Figure 2.9, but now considering Ls = 15 dB, Figure 4.9 shows the curve with

the assumed mean RCS values of the Section 3.4, σ1 = 0.0296 m2 and the curve with the

RCS values of 50% probability of appearance, σ2 = 0.02 m2.

Note that, for Pd = 0.99, Rmax = 573 m when used σ1 as the drone RCS and Rmax =

520 m when used σ2, which leads to a difference of 50 m in detection range. Also, for a

decrease in Pd it is observed that the difference in detection range is increased, reaching
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Figure 4.8: CDFs of the simulated RCS values and the fitted Exponential distribution,
when αI,19 = 0◦.

197 m for Pd = 0.2.

Considering now the evaluation of the difference between the use of the simulated

RCS values and the modeled RCS values in Equation (3.1), Figure 4.10 shows Rmax as

a function of SNR, considering the parameters of the Furuno FAR-2117 radar presented

in Table 3.1. These curves assume αI
19 = 0◦ and RCS values that satisfy F (x ≤ u) =

FdsI (σ
I
19,j ≤ v) = 0.1, 0.3, 0.5, . . . , 0.9, with u ∈ R and v ∈ σI . Observe that for u and v

that satisfies F (x ≤ u) = FdsI (σ
I
19,j ≤ v) = 0.1, 0.5, and 0.9, the curves are well-fitted,

with an error less than 0.15%. The curve with the highest error, about 3.8%, occurs

for F (x ≤ 0.0101) = FdsI (σ
I
19,j ≤ 0.0101) = 0.3. Note that increasing both F and FdsI

corresponds to an increment in SNR, considering the same Rmax.

4.4.2 Dataset II

For this dataset, the RCS simulation assumed ϕII = {0◦, 2◦, 4◦, . . . , 358◦}, αII = {−10◦,

−5◦, 0◦, 5◦, 10◦}, and the set of frequencies used as f II = {1, 2, 3, . . . , 40} GHz. Figure 4.11

shows the relative frequency for all probability distributions for each criterion and for

f II
i = 10 GHz (a), f II

i = 26 GHz (b), f II
i = 33 GHz (c), and f II

i = 39 GHz (d).

Note that in (a), (b), and (c), even though the Exponential distribution does not
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Figure 4.9: Pd as a function of distance, in meters, for σ1 = 0.0296 m2 from Chapter 3
and σ2 = 0.02 m2 from Chapter 4.

have an LLK score, it is the best-fit distribution, with Ravgj = 0.67, Ravgj = 0.53, and

Ravgj = 0.27, respectively. In (d), even when introduced the penalty terms of (4.4) and

(4.5), the Log-normal distribution was the best-fit, with Ravgj = 0.47. Furthermore,

Table 4.5 shows the probability distribution functions with the highest average relative

frequency for each simulated frequency. The probability distributions that appear the

most are the Exponential, 23 times, followed by the Log-Normal, 11 times.

To perform the analysis of PDF and CDF of the two probability distributions that

appear the most - Exponential and Log-normal -, consider αII
2 = 0◦ and x the random

variable for the Exponential and Log-normal distributions. The PDF, f(x), and CDF,

F (x), of the Exponential distribution are given by (4.14) and (4.15), respectively. For the

Log-normal distribution, consider the following equations

f(x) =
1

xγ
√
2π

exp

(
−(lnx− µ)2

2γ2

)
(4.17)

and

F (x) =
1

2

[
1 + erf

(
lnx− µ

γ
√
2

)]
, (4.18)

in which x > 0, µ is the mean of the logarithm of the random variable, γ is the standard

deviation of the logarithm of the random variable, and erf is the error function. (4.17)
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Figure 4.10: Rmax as a function of SNR for some simulated RCS values.

and (4.18) are, respectively, the PDF and CDF of the Log-normal distribution.

Figure 4.12 shows the histogram of the simulated subdatasets of RCS values, σII
2,f ,

for αII
2 = 0◦, and for f II

i = 10 GHz (a), f II
i = 26 GHz (b), f II

i = 33 GHz (c), and

f II
i = 39 GHz (d) along the PDFs of the best-fit probability distribution for the mentioned

frequencies.

Note that in (a) the highest densities are concentrated for σII
2,j ≤ 0.025 m2. In (b) and

(d) the highest densities are concentrated for σII
2,j ≤ 0.05 m2. In (c), the highest densities

are located for σII
2,j ≤ 0.1 m2. Moreover, to analyze the CDFs, observe Figure 4.13.

It shows the curves of the CDF’s simulated RCS, FdsII (σ
II
2,j,f ), for αII

2 = 0◦, and for

f II
i = 10 GHz (a), f II

i = 26 GHz (b), f II
i = 33 GHz (c), and f II

i = 39 GHz (d) along the

CDFs of the best-fit probability distribution for the mentioned frequencies.

Figure 4.13 (a) shows that there is a probability of 0.9 or 90% for σII
2,j ≤ 0.0648 m2

and x ≤ 0.0613 m2, i.e. FdsII (σ
II
2,j ≤ 0.0648) = F (x ≤ 0.0613) = 0.9, that produces

an error of 100 × |x − σII
2,j|/σII

2,j = 100 × |0.0613 − 0.0648|/0.0648 = 5.40%. Considering

now FdsII (σ
II
2,j ≤ 0.0166) = F (x ≤ 0.0184) = 0.5, it results in an error of approxi-

mately 10.84%. Furthermore, the linear correlation, given by Equation (4.16), between

both curves is cy,x = 0.9965. In (b), FdsII (σ
II
2,j ≤ 0.1373) = F (x ≤ 0.1539) = 0.9 and

FdsII (σ
II
2,j ≤ 0.0457) = F (x ≤ 0.0457) = 0.5 yield errors of approximately 12.1% and 0%,
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Figure 4.11: Relative frequency for (a) f II
i = 10 GHz, (b) f II

i = 26 GHz, (c) f II
i = 33 GHz,

and f II
i = 39 GHz.

respectively. The linear correlation for these curves is cy,x = 0.9984. When doing the

same calculations as in (c) and (d), it results in errors of 7.7% and 57.0% for (c) and

26.2% and 14.7% for (d). The linear correlations between the curves in (c) and (d) are,

respectively, 0.9937 and 0.9924.

In order to be reproducible, Table 4.6 provides the parameter values of each best-fit

probability distribution for each frequency, f , and elevation angle, αII
i .

4.4.3 Dataset III

This dataset, provided by [29], assumed ϕIII = {0◦, 2◦, 4◦, . . . , 358◦}, αIII = {−90◦,−85◦,

−80◦, . . . , 0◦}, and f III = {26, 27, 28, . . . , 40} GHz. Among the nine drone models mea-

sured, statistical analyzes will initially be performed for the DJI Phantom IV and the

results for the other UASs models will be presented in the following subsection. Fig-

ure 4.14 shows the measured RCS of the DJI Phantom IV, for all frequencies. From left

to right and from top to bottom, the frequencies increase from 26 to 40 GHz in step of
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Figure 4.12: Histogram of simulated RCS values, σII
f , for αII

2 = 0◦, and the best fitting
probability distributions PDFs for (a) f II

i = 10 GHz, (b) f II
i = 26 GHz, (c) f II

i = 33 GHz,
and f II

i = 39 GHz.

1 GHz. For the other UASs, the measured RCS is founded in Appendix B. Note that

with increasing frequency, there is a tendency for the RCS values to increase, as seen for

αIII
0 = −90◦, in which the concentration of colored RCS dots are increasing.

Applying the steps presented in Subsection 4.3.5, Figure 4.15 shows the relative fre-

quency of each probability distribution and the criterion for all frequencies used. Table 4.7

summarizes the best-fit probability distribution for each frequency and each UAS.

Observing this table, Figure 4.1, and Table 4.2 note that, in general, the Exponential

distribution is well-fitted in UASs with large geometrical areas such as the Hexacopter

and in UASs with more rounded geometric parts, such as DJI Phantom IV, DJI F450,

and Walkera Voyager 4. The Generalized Pareto distribution appears to best fit UASs

with lowest RCS, such as DJI Mavic Pro, Parrot AR.Drone, or Helicopter Kyosho and

some UASs with more squared geometric parts such as DJI Matrice 100 and HMF Y600.

Furthermore, besides the simulations of the Datasets I and II do not follow the entire

setup of the measurement of the Dataset III, done by [29], it is possible to note that the
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Figure 4.13: CDF of simulated RCS values, σII
2,j,f , for αII

2 = 0◦, and the best fitting
probability distributions CDFs for (a) f II

i = 10 GHz, (b) f II
i = 26 GHz, (c) f II

i = 33 GHz,
and f II

i = 39 GHz.

Exponential distribution was also the best-fit distribution for the DJI Phantom IV.

To perform the analysis of PDF and CDF for DJI Phantom IV, consider αIII
19 = 0◦ and

x, the random variable for the Exponential distribution. The PDF, f(x), and CDF, F (x),

of the Exponential distribution are given by (4.14) and (4.15), respectively. Figure 4.16

shows the histogram of the measured RCS values, σIII
19,f , for αIII

19 = 0◦, and for f III
i =

26 GHz (a), f III
i = 31 GHz (b), f III

i = 36 GHz (c), and f III
i = 40 GHz (d) along the

PDFs of the best-fit probability distribution for the mentioned frequencies. In (a), (b),

(c) and (d) the highest density is for σIII
19,j ≤ 0.1 m2.

In order to analyze the CDFs, Figure 4.17 presents the curves of the CDF’s measured

RCS, FdsIII (σ
III
19,j,f ), for αIII

19 = 0◦, and for f III
i = 26 GHz (a), f III

i = 31 GHz (b),

f III
i = 36 GHz (c), and f III

i = 40 GHz (d) along the CDFs of the best-fit probability

distribution for the mentioned frequencies.

Figure 4.17 (a) shows that there is a probability of 0.9 or 90% for σIII
19,j ≤ 0.12 m2
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Figure 4.14: Measured RCS of the DJI Phantom IV for frequencies ranging from 26 to
40 GHz.

and x ≤ 0.1225 m2, i.e. FdsIII (σ
III
19,j ≤ 0.12) = F (x ≤ 0.1225) = 0.9, that produces an

error of 100 × |x − σIII
19,j|/σIII

19,j = 100 × |0.1225 − 0.12|/0.12 = 2.1%. Considering now

FdsIII (σ
III
19,j ≤ 0.04) = F (x ≤ 0.0375) = 0.5, it results in an error of approximately 6.25%.

Furthermore, the linear correlation, given by (4.16), between both curves is cy,x = 0.9964.

In (b), FdsIII (σ
III
19,j ≤ 0.1905) = F (x ≤ 0.2032) = 0.9 and FdsIII (σ

III
19,j ≤ 0.06) = F (x ≤

0.0635) = 0.5 yield errors of approximately 6.67% and 5.8%, respectively. The linear

correlation for these curves is cy,x = 0.9979. When performing the same calculations as in

(c) and (d), it results in errors of 3.2% and 0% for (c) and 8.9% and 25.2% for (d). The

linear correlations between the curves in (c) and (d) are, respectively, 0.9971 and 0.996.

4.4.4 Mean RCS values analysis

Despite the mean value itself does not provide robust information, it serves as a starting

point for further analysis. Therefore, for Dataset I, Figure 4.18 shows the mean value of

RCS, σI
i , as a function of the elevation angle, αI

i . Note that the two largest RCS values

are σI
0 = 1.24 m2 and σI

37 = 1.31 m2 for, respectively αI
0 = −90◦ and αI

37 = 90◦, which

correspond to the bottom and top, respectively, of Phantom IV, where the area is greater.

For Dataset II, Figure 4.19 shows, on the left, the azimuth angle mean RCS values,

σII
i,f , for each frequency, f , and each element of αII , given by

σII
i,f =

NII−1∑
j=0

σII
i,j

N II
, (4.19)
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Figure 4.15: Relative frequency of each probability distribution for LLK, AIC and BIC
in all f III for DJI Phantom IV.

with i = 0, 1, 2, . . . ,M II −1 and f ∈ f II . On the right, it shows the frequency mean RCS

values of σII
i,f , named σII

i , over all the frequencies, f II , for each element of αII , given by

σII
i =

∑
f∈fII

σII
i,f

KII
. (4.20)

It is possible to note that for αII
2 = 0◦, σII

i,f increases as the frequency also increases,

which may demonstrate that the DJI Phantom IV sides are geometrically more uniform

and with decreasing radar signal wavelength, the area which scatters the incident plane

wave appears to be bigger. For the other values of αII
i , there is a decrease in σII

i as αII
i

moves away from 0◦.

Figure 4.20 shows the elevation angle mean RCS values, σII
f , over all values of αII

for each frequency, f , given by

σII
f =

MII−1∑
i=0

σII
i,f

M II
. (4.21)

Note that, in general, σII
f increases with the increasing of the frequency, being σII

f =

0.012 m2 for f = 1 GHz, σII
f = 0.023 m2 for f = 10 GHz, and σII

f = 0.037 m2 for

f = 40 GHz.

For Dataset III, Figure 4.21 illustrates the increase in the mean of σIII
i,f , called σIII

f ,
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Figure 4.16: Histogram of measured RCS values, σIII
19,f , for αIII

19 = 0◦, and the best
fitting probability distributions PDFs for (a) f III

i = 26 GHz, (b) f III
i = 31 GHz, (c)

f III
i = 36 GHz, and f III

i = 40 GHz.

∀αIII
i ∈ αIII , for some frequencies. Note that for αIII

0 = −90◦, the bottom of the drone,

σIII
i,f is larger than the others because it has the largest area where the radar signal

can reflect and scatter. Furthermore, it is important to observe that there is, for all

frequencies, an approximate interval, −40◦ ≤ αIII
i ≤ −30◦, where σIII

f is minimum.

4.5 Summary

In this chapter, a statistical analysis of the RCS of nine UASs models was carried out,

using three data sets: two simulated and one measured, provided by [29]. The goal was

to verify the best probability distribution to model the RCS of the UASs at different

frequencies and incidence angles. Thus, three criteria were used to evaluate the fit of

the probability distributions to the RCS data: LLK, AIC, and BIC. These criteria allow

comparing different distributions and penalizing the complexity of the models, avoiding

overfitting the data. Furthermore, it was examined the mean values of the RCS as a
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Figure 4.17: CDFs of measured RCS values, σIII
19,j, for αIII

19 = 0◦, and the best fitting
probability distributions CDFs for (a) f III

i = 26 GHz, (b) f III
i = 31 GHz, (c) f III

i =
36 GHz, and f III

i = 40 GHz.

function of elevation angle and frequency. It highlights the impact of these factors on the

RCS values and, consequently, on radar detection performance. The analysis contributes

to understanding how RCS variability are affected by the changing of operating frequency

and the elevation angle of the target.

The numerical results suggested that the Exponential distribution was the most fre-

quent in the simulated and measured data for DJI Phantom IV and UASs with more

rounded geometric parts, while the Generalized Pareto distribution was the most fre-

quent for the data provided by [29], adapting itself with UASs with lowest RCS. These

distributions presented the best LLK, AIC, and BIC values, in addition to a good agree-

ment between the observed and expected PDF and CDF curves. Additionally, the analysis

of the mean value of the RCS shows that, in general, the RCS increases with increasing

frequency. Moreover, the RCS is shown to be higher at the top and bottom of the UAS

where there is more reflective area.
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Figure 4.18: Mean values of the RCS as a function of the elevation angle.

Figure 4.19: Azimuth angle mean RCS values, σII
i,f , as a function of the frequency for the

simulated elevation angles, αII
i , (left) and frequency mean RCS values, σII

i , over all the
frequencies, for each simulated elevation angle, αII

i (right).
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Table 4.4: Exponential’s parameter, γ, for distinct elevation angles, αI .

αI γ
-90º 1.2473
-85º 0.3144
-80º 0.1511
-75º 0.1210
-70º 0.0527
-65º 0.0457
-60º 0.0423
-55º 0.0292
-50º 0.0246
-45º 0.0206
-40º 0.0177
-35º 0.0121
-30º 0.0116
-25º 0.0162
-20º 0.0155
-15º 0.0235
-10º 0.0160
-5º 0.0236
0º 0.0284
5º 0.0119
10º 0.0112
15º 0.0122
20º 0.0123
25º 0.0125
30º 0.0099
35º 0.0176
40º 0.0175
45º 0.0205
50º 0.0310
55º 0.0405
60º 0.0405
65º 0.0535
70º 0.0835
75º 0.1056
80º 0.1502
85º 0.6645
90º 1.3116
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Table 4.5: Best probability distribution and its average relative frequency for all frequen-
cies.

f II (GHz) Best-fit distribution RII,avgj

1 Nakagami 0.33
2 Log-normal 0.80
3 Exponential 0.40
4 Exponential 0.40
5 Exponential 0.40
6 Gamma 0.33
7 Exponential 0.33
8 Exponential 0.27
9 Log-normal 0.53
10 Exponential 0.67
11 Exponential 0.60
12 Exponential 0.47
13 Exponential 0.47
14 Exponential 0.40
15 Log-normal 0.33
16 Exponential 0.33
17 Log-normal 0.53
18 Exponential 0.40
19 Log-normal 0.53
20 Generalized Pareto 0.33
21 Log-normal 0.33
22 Exponential 0.53
23 Exponential 0.60
24 Exponential 0.47
25 Log-normal 0.53
26 Exponential 0.53
27 Log-normal 0.53
28 Log-normal 0.40
29 Exponential 0.33
30 Exponential 0.40
31 Exponential 0.33
32 Gamma 0.27
33 Exponential 0.27
34 Log-normal 0.53
35 Exponential 0.47
36 Exponential 0.27
37 Gamma 0.27
38 Exponential 0.40
39 Log-normal 0.47
40 Gamma 0.53
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Table 4.6: Parameters values of the best-fits distribution for each frequency.

αII

f II
i GHz Distribution Parameters −10◦ −5◦ 0◦ 5◦ 10◦

1 Nakagami µ,Ω 0.5265, 0.0004 0.5625, 0.0003 0.3839, 0.0002 0.7116, 0.0002 0.7673, 0.0001
2 Lognormal µ, σ −5.0038, 1.3175 −4.8225, 1.3136 −4.7389, 1.4262 −4.2935, 1.1367 −4.1883, 0.9585
3 Exponential µ 0.0207 0.0242 0.0234 0.0268 0.0262
4 Exponential µ 0.0199 0.0238 0.0310 0.0388 0.0276
5 Exponential µ 0.0258 0.0249 0.0215 0.0178 0.0133
6 Gamma a, b 1.3747, 0.0144 1.1083, 0.0277 1.1290, 0.0218 1.3858, 0.0145 1.5177, 0.0120
7 Exponential µ 0.0174 0.0205 0.0260 0.0188 0.0150
8 Exponential µ 0.0201 0.0243 0.0328 0.0192 0.0135
9 Lognormal µ, σ −4.4585, 0.9624 −3.5702, 0.7547 −4.2391, 1.32 −4.5827, 0.9089 −4.6905, 1.4165
10 Exponential µ 0.0181 0.0301 0.0271 0.0223 0.0218
11 Exponential µ 0.0254 0.0375 0.0307 0.0232 0.0232
12 Exponential µ 0.0231 0.0346 0.0295 0.0213 0.0251
13 Exponential µ 0.0207 0.0358 0.0350 0.0385 0.0233
14 Exponential µ 0.0247 0.0313 0.0308 0.0398 0.0305
15 Lognormal µ, σ −4.3385, 1.04 −4.0246, 1.37 −3.7661, 1.4753 −3.4856, 0.8565 −3.9650, 0.8899
16 Exponential µ 0.0184 0.0266 0.0529 0.0585 0.0344
17 Lognormal µ, σ −4.2219, 0.9499 −4.0580, 0.9607 −3.6578, 0.9088 −3.4156, 1.2325 −4.2405, 1.1228
18 Exponential µ 0.0272 0.0376 0.0486 0.0493 0.0368
19 Lognormal µ, σ −4.1432, 1.0046 −3.9469, 0.9628 −3.5106, 0.9846 −3.6378, 1.2003 −4.4471, 1.0957
20 Gen. Pareto k, σ, θ −0.3038, 0.0242, 0 −0.37, 0.0375, 0 −0.5129, 0.0682, 0 −0.0564, 0.0228, 0 0.3249, 0.0191, 0
21 Lognormal µ, σ −4.4235, 1.1207 −4.0116, 1.2978 −3.4628, 1.1738 −4.1645, 1.3023 −4.2757, 1.1832
22 Exponential µ 0.0247 0.0507 0.0881 0.0354 0.0202
23 Exponential µ 0.0197 0.0320 0.0485 0.0258 0.0233
24 Exponential µ 0.0201 0.0285 0.0675 0.0297 0.0204
25 Lognormal µ, σ −4.2236, 0.9230 −3.6892, 1.0759 −3.5116, 1.0370 −4.2429, 0.9571 −4.2643, 1.1758
26 Exponential µ 0.0193 0.0402 0.0577 0.0323 0.0235
27 Lognormal µ, σ −4.3760, 0.8094 −3.9194, 0.9822 −3.6540, 1.1809 −3.9453, 0.8218 −4.1877, 1.1230
28 Lognormal µ, σ −4.3806, 1.1166 −4.1796, 1.2473 −3.3444, 1.2409 −4.3126, 1.1954 −4.0104, 0.8676
29 Exponential µ 0.0165 0.0317 0.0693 0.0307 0.0339
30 Exponential µ 0.0212 0.0290 0.0523 0.0299 0.0249
31 Exponential µ 0.0186 0.0276 0.0708 0.0357 0.0234
32 Gamma a, b 0.9529, 0.02 1.3617, 0.0221 0.7543, 0.1218 1.3645, 0.02 1.0948, 0.0205
33 Exponential µ 0.0264 0.0394 0.0635 0.032 0.025
34 Lognormal µ, σ −4.6798, 1.2171 −3.9463, 1.2941 −3.5387, 1.2218 −4.0855, 1.0824 −4.8369, 1.1348
35 Exponential µ 0.0165 0.0376 0.1129 0.0251 0.0221
36 Exponential µ 0.018 0.0366 0.0691 0.0327 0.0167
37 Gamma a, b 1.0335, 0.0171 1.4766, 0.0251 1.4863, 0.0493 1.4137, 0.0239 1.1263, 0.0171
38 Exponential µ 0.0248 0.0384 0.1014 0.0336 0.0229
39 Lognormal µ, σ −4.4527, 1.1416 −3.2924, 1.0343 −3.2477, 0.9595 −4.1576, 0.9440 −4.2924, 1.0731
40 Gamma a, b 1.5177, 0.0120 1.7102, 0.0791 1.4917, 0.0415 1.2762, 0.029 1.2909, 0.0199

Table 4.7: Best-fit distribution for each UAS model and for each frequency.

Best-Fit Distribution
Phantom IV Mavic F450 M100 Parrot Kyosho Y600 Voyager 4 Hexa

f
I
I
I

i
(G

H
z)

26 Exponential Lognormal Exponential Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Weibull Exponential
27 Exponential Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Exponential Exponential
28 Exponential Gen. Pareto Exponential Exponential Gen. Pareto Gen. Pareto Gamma Exponential Exponential
29 Exponential Gen. Pareto Exponential Gen. Pareto Gen. Pareto Exponential Exponential Exponential Exponential
30 Exponential Gen. Pareto Gen. Pareto Exponential Lognormal Gen. Pareto Exponential Exponential Exponential
31 Exponential Gen. Pareto Gen. Pareto Exponential Gen. Pareto Gen. Pareto Exponential Exponential Exponential
32 Exponential Gen. Pareto Exponential Exponential Lognormal Gen. Pareto Gen. Pareto Gen. Pareto Exponential
33 Exponential Gen. Pareto Exponential Weibull Gen. Pareto Gen. Pareto Weibull Exponential Weibull
34 Exponential Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Exponential
35 Exponential Gen. Pareto Exponential Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Exponential Exponential
36 Exponential Gen. Pareto Gen. Pareto Exponential Gen. Pareto Weibull Gen. Pareto Exponential Exponential
37 Exponential Gen. Pareto Exponential Gen. Pareto Lognormal Gen. Pareto Gen. Pareto Exponential Exponential
38 Exponential Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Exponential Exponential
39 Exponential Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Gen. Pareto Exponential Exponential
40 Exponential Gen. Pareto Gen. Pareto Exponential Gen. Pareto Gen. Pareto Gen. Pareto Weibull Exponential
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Figure 4.20: Elevation angle mean RCS values, σII
f , over all values of ϕII and αII for

each frequency.

Figure 4.21: σIII
f from DJI Phantom IV for f III

i = 26, 31, 36 and 40 GHz.



Chapter 5

Conclusion

This work presented a statistical analysis and modeling of the RCS of UASs, as well as

an evaluation of their detection by an X-band pulsed radar. The goal was to contribute

to the development of countermeasure techniques against potential threats caused by the

misuse of UAS.

Chapter 2 discussed the radar system, a technology that emits electromagnetic waves

and captures reflected signals to determine the presence, distance, and speed of targets. It

explained the classification of radar systems according to their operating frequency range,

which affects their performance and characteristics. The chapter also covered the Doppler

Effect, which is the change in the measured frequency of a wave due to the relative motion

between the source and the observer. It further elaborated on the transmitted signal’s

waveform, the shape of the signal emitted by the radar system, which can be either pulsed

or continuous wave. Lastly, it introduced the radar equation, a mathematical expression

that relates the maximum range and the parameters that affect radar detection.

In Chapter 3, the use of the Furuno FAR-2117 pulsed radar to detect the DJI Phan-

tom IV drone was investigated. For this, RCS simulations, radar range, and detection

probability were performed. Subsequently, a field measurement was conducted using the

Furuno FAR-2117 radar and the DJI Phantom IV drone, which was flying over Guanabara

Bay. The results indicated that the radar was able to detect the drone at a maximum

range of 425 m and a maximum height of 32 m, under favorable electromagnetic propaga-

tion conditions and for Pd ≥ 0.99. Furthermore, the two proposed methods helped infer

the value of the system loss, Ls, a parameter that is not easily obtained from the man-

ufacturer and essential to perform such analysis. The difference between the simulated

results and the field measurements was due to the statistical nature of the RCS of the

UAS and the fact that more cables were used than necessary, in the installation of the
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product, to obtain the best performance of the FAR-2117 radar which increases the loss

of the system.

In Chapter 4, the statistical analysis and modeling of the RCS of a DJI Phantom IV

drone and a database composed of nine different UASs were discussed. For the Phantom

IV drone, the RCS datasets were generated through simulations for distinct frequencies

and azimuth and elevation angles, and for the UAS database, the RCSs were measured in

an anechoic chamber by [29]. Then, the subdatasets, created from the datasets, were fit-

ted to usual probability distributions using three criteria, namely: Log-Likelihood (LLK),

Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). In ad-

dition, the impacts of RCS modeling on radar detection range were analyzed and were

found a difference ,between the use of the mean RCS value from Chapter 3 and the 50%

RCS value from the CDF curve, of 53 m for Pd = 0.99 and 197 m for Pd = 0.2. Moreover

when comparing the simulated and modeled RCS values it was obtained an error of 3.8%.

Furthermore, the results indicated that the exponential distribution best fit the simulated

and measured RCS data, in general. Also, it was analyzed the mean RCS values. It

showed that, in general, the RCS increases with increasing frequency. Moreover, the RCS

is higher at the top and bottom of the UAS where there is more reflective area.

Finally, for future work, it is intended as follows:

• To use different UASs for field measurements of the maximum range for the Fu-

runo FAR-2117 pulsed radar and a FMCW radar, in order to compare each other

performance.

• To perform a known setup for RCS measurement, in an anechoic chamber, of dif-

ferent drones in order to simulate it in the same conditions and better validate

it.

• To use statistical criteria to perform a mean of UAS classification, analyzing the

different scores that each drone has achieved for each criterion.

• To study the relationship between average RCS peaks at certain frequencies.

• To treat RCS as a stochastic process combining variables such as frequency, elevation

angle and azimuth and radar straight section to analise their behavior.
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APPENDIX A -- Probability Density
Functions (PDFs) and
Cumulative Distribution
Functions (CDFs)

The PDFs and CDFs of the probability distributions used in this thesis and not presented

are:

1 - Exponential PDF:

f(x) =


1
γ
e−

x
γ , x ≥ 0

0 , x < 0
(A.1)

in which x is the random variable and γ is the parameter.

CDF:

F (x) =

1− e−
x
γ , x ≥ 0

0 , x < 0
(A.2)

in which x is the random variable and γ is the parameter.

2 - Gamma distribution PDF:

f(x; a, b) =
baxa−1e−bx

Γ(a)
(A.3)

in which x is the random variable, a > 0 is the shape parameter, b > 0 is the rate

parameter, and Γ(a) is the Gamma function.

CDF:

F (x; a, b) =
γ(a, bx)

Γ(a)
(A.4)

in which γ(a, bx) is the lower incomplete gamma function.
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3 - Generalized Extreme Value PDF:

f(x;µ, σ, ξ) =
1

σ
exp

(
−
(
1 + ξ

x− µ

σ

)− 1
ξ

)(
1 + ξ

x− µ

σ

)− 1
ξ
−1

(A.5)

in which x is the random variable, ξ is the shape parameter, σ > 0 is the scale parameter,

and µ is the location parameter.

CDF:

F (x;µ, σ, ξ) = exp

(
−
(
1 + ξ

x− µ

σ

)− 1
ξ

)
(A.6)

4 - Generalized Pareto PDF:

f(x; θ, σ, k) =
1

σ

(
1 + k

x− θ

σ

)− 1
k
−1

(A.7)

in which x is the random variable, k is the shape parameter, σ > 0 is the scale parameter,

and θ is the location parameter.

CDF:

F (x; θ, σ, k) = 1−
(
1 + k

x− θ

σ

)− 1
k

(A.8)

5 - Log-normal PDF:

f(x) =
1

xγ
√
2π

exp

(
−(lnx− µ)2

2γ2

)
(A.9)

CDF:

F (x) =
1

2

[
1 + erf

(
lnx− µ

γ
√
2

)]
, (A.10)

in which x > 0, µ is the mean of the logarithm of the random variable, γ is the standard

deviation of the logarithm of the random variable, and erf is the error function.

6 - Nakagami PDF:

f(x;m,Ω) =
2mm

Γ(m)Ωm
x2m−1 exp

(
−m

Ω
x2
)

(A.11)

in which x is the random variable, m > 0 is the shape parameter, and Ω > 0 is the spread

parameter.

CDF:

F (x;m,Ω) = P
(
m,

m

Ω
x2
)

(A.12)

in which P (m, z) is the regularized lower incomplete gamma function.
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7 - Rayleigh PDF:

f(x;σ) =
x

σ2
exp

(
− x2

2σ2

)
(A.13)

in which x is the random variable and σ > 0 is the scale parameter.

CDF:

F (x;σ) = 1− exp

(
− x2

2σ2

)
(A.14)

8 - Rician PDF:

f(x; s, σ) =
x

σ2
exp

(
−x2 + s2

2σ2

)
I0

(xs
σ2

)
(A.15)

in which x is the random variable, s is the non-centrality parameter, σ > 0 is the scale

parameter, and I0 is the modified Bessel function of the first kind with order zero.

CDF:

F (x; s, σ) = 1−Q1

( s
σ
,
x

σ

)
(A.16)

in which Q1(a, b) is the Marcum Q-function.

9 - Weibull PDF:

f(x;λ, k) =
k

λ

(x
λ

)k−1

exp

(
−
(x
λ

)k)
(A.17)

in which x is the random variable, λ > 0 is the scale parameter, and k > 0 is the shape

parameter.

CDF:

F (x;λ, k) = 1− exp

(
−
(x
λ

)k)
(A.18)
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APPENDIX B -- Measured RCS

Figure B.1: Measured RCS of the DJI Mavic Pro for frequencies ranging from 26 to
40 GHz.

Figure B.2: Measured RCS of the DJI F450 for frequencies ranging from 26 to 40 GHz.
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Figure B.3: Measured RCS of the DJI Matrice 100 for frequencies ranging from 26 to
40 GHz.

Figure B.4: Measured RCS of the Parrot AR.Drone for frequencies ranging from 26 to
40 GHz.
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Figure B.5: Measured RCS of the Helicopter Kyosho for frequencies ranging from 26 to
40 GHz.

Figure B.6: Measured RCS of the HMF Y600 for frequencies ranging from 26 to 40 GHz.



Appendix B -- Measured RCS 91

Figure B.7: Measured RCS of the Walkera Voyager 4 for frequencies ranging from 26 to
40 GHz.

Figure B.8: Measured RCS of the custom Hexacopter for frequencies ranging from 26 to
40 GHz.
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